975 resultados para Defect induced damage model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064 nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064 nm with a 12 ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta2O5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta2O5 films on different substrates are investigated before and after annealing at 673 K for 12h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta2O5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta2O5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta2O5 films are deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer ( XRD) results. X-ray photoelectron spectroscopy ( XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2O5 film achieves the highest laser induced damage threshold ( LIDT) either at 355 or 1064 nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064 nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a technique to improve the ability of optical films to resist laser-induced damage (ARLID), laser preconditioning has been investigated broadly. In this paper, the laser preconditioning effect has been analyzed based on the defect-initialized damage mechanism that the author had put forward previously. Theoretical results show that an energy density scope (PEDS) exists in which the preconditioning laser can effectively improve the ARLID of optical films. In addition, when the energy density of the testing laser pulse is altered, the boundary of PEDS will change accordingly. Experimental results have verified these theoretical assumptions. PEDS will also become wider if the critical energy density of the preconditioning laser that can induce films' micro-damage increases, or the critical energy density of the preconditioning laser that can cause laser annealing decreases. In these cases, it is relatively easy to improve the ARLID of optical films. Results of the current work show great significance in enhancing the ARLID of optical films through the laser preconditioning technique. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of infrastructure in major cities often involves tunnelling, which can cause damage to existing structures. Therefore, these projects require a careful prediction of the risk of settlement induced damage. The simplified approach of current methods cannot account for three-dimensional structural aspects of buildings, which can result in an inaccurate evaluation of damage. This paper investigates the effect of the building alignment with the tunnel axis on structural damage. A three-dimensional, phased, fully coupled finite element model with non-linear material properties is used as a tool to perform a parametric study. The model includes the simulation of the tunnel construction process, with the tunnel located adjacent to a masonry building. Three different type of settlements are included (sagging, hogging and a combination of them), with seven different increasing angles of the building with respect to the tunnel axis. The alignment parameter is assessed, based on the maximum occurring crack width, measured in the building. Results show a significant dependency of the final damage on the building and tunnel alignment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main causes of failure of historic buildings is represented by the differential settlements of foundations. Finite element analysis provides a useful tool for predicting the consequences of given ground displacements in terms of structural damage and also assesses the need of strengthening techniques. The actual damage classification for buildings subject to settlement bases the assessment of the potential damage on the expected crack pattern of the structure. In this paper, the correlation between the physical description of the damage in terms of crack width and the interpretation of the finite element analysis output is analyzed. Different discrete and continuum crack models are applied to simulate an experiment carried on a scale model of a masonry historical building, the Loggia Palace in Brescia (Italy). Results are discussed and a modified version of the fixed total strain smeared crack model is evaluated, in order to solve the problem related to the calculation of the exact crack width.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Very limited information is available from in vivo studies about whether smoking and/or nicotine affect gingival tissues in the absence of plaque. The purpose of this study is to evaluate the effect of the systemic administration of nicotine in the proliferation and counting of fibroblast-like cells in the gingival tissue of rats.Methods: Thirty adult male Wistar rats were randomly assigned into two groups to receive subcutaneous injections of a saline solution (control group = group C) or nicotine solution (group N; 3 mg/kg) twice a day. The animals were euthanized 37, 44, or 51 days after the first subcutaneous injection. Specimens were routinely processed for serial histologic sections. Five fields of view in the connective tissue adjacent to the gingival epithelium and above the alveolar bone crest of the maxillary first molar were selected for the counting of fibroblast-like cells. Data were statistically analyzed (P<0.05).Results: The intergroup analysis detected a lower number of fibroblast-like cells in group N compared to group C on days 37 (2.65 +/- 1.41 and 6.67 +/- 3.25, respectively), 44 (2.70 +/- 1.84 and 8.57 +/- 2.37, respectively), and 51(2.09 +/- 1.41 and 7.49 +/- 2.60, respectively) (P<0.05). The quantification of fibroblast-like cells showed no significant difference (P >0.05) in the intragroup analysis of control and nicotine throughout experimental periods. In the intergroup analysis, group N had reduced proliferating cell nuclear antigen positive fibroblasts compared to group C in all periods (P<0.05).Conclusion: The daily systemic administration of nicotine negatively affected, in vivo, the number and proliferation of fibroblast-like cells in the gingival tissue of rats. J Periodontol 2011;82:1206-1211.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In bovines characterization of biochemical and molecular determinants of the dominant follicle before and during different time intervals after gonadotrophin surge requires precise identification of the dominant follicle from a follicular wave. The objectives of the present study were to standardize an experimental model in buffalo cows for accurately identifying the dominant follicle of the first wave of follicular growth and characterize changes in follicular fluid hormone concentrations as well as expression patterns of various genes associated with the process of ovulation. From the day of estrus (day 0), animals were subjected to blood sampling and ultrasonography for monitoring circulating progesterone levels and follicular growth. On day 7 of the cycle, animals were administered a PGF2α analogue (Tiaprost Trometamol, 750 μg i.m.) followed by an injection of hCG (2000 IU i.m.) 36 h later. Circulating progesterone levels progressively increased from day 1 of the cycle to 2.26 ± 0.17 ng/ml on day 7 of the cycle, but declined significantly after PGF2α injection. A progressive increase in the size of the dominant follicle was observed by ultrasonography. The follicular fluid estradiol and progesterone concentrations in the dominant follicle were 600 ± 16.7 and 38 ± 7.6 ng/ml, respectively, before hCG injection and the concentration of estradiol decreased to 125.8 ± 25.26 ng/ml, but concentration of progesterone increased to 195 ± 24.6 ng/ml, 24 h post-hCG injection. Inh-α and Cyp19A1 expressions in granulosa cells were maximal in the dominant follicle and declined in response to hCG treatment. Progesterone receptor, oxytocin and cycloxygenase-2 expressions in granulosa cells, regarded as markers of ovulation, were maximal at 24 h post-hCG. The expressions of genes belonging to the super family of proteases were also examined; Cathepsin L expression decreased, while ADAMTS 3 and 5 expressions increased 24 h post-hCG treatment. The results of the current study indicate that sequential treatments of PGF2α and hCG during early estrous cycle in the buffalo cow leads to follicular growth that culminates in ovulation. The model system reported in the present study would be valuable for examining temporo-spatial changes in the periovulatory follicle immediately before and after the onset of gonadotrophin surge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female bonnet monkeys were injected i.v. with 25 µl antiserum to FSH on Days 5, 6 or 7 of the cycle: the length of the luteal phase was shortened but there was no alteration in cycle length. Proven fertile females (N = 6) were caged throughout the period of the experiment (6 cycles) with proven fertile males and treated with 25 µl FSH antiserum on Day 7 of each of 3 successive cycles. Out of 18 cycle exposures during the treatment phase, 17 were ovulatory, but no pregnancies occurred. In the post-treatment phase, 5 monkeys became pregnant within 3 cycle exposures. These results show that it is possible to render female monkeys infertile by creating luteal insufficiency and this can be achieved repeatedly in a reproducible manner by depriving the cyclic females of FSH support on Day 7 of consecutive cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unusual optical bandgap narrowing is observed in undoped SnO2 nanoparticles synthesized by the solution combustion method. The estimated crystallite size is nearly 7 nm. Though the quantum confinement effect predicts a larger optical bandgap for materials with small crystallite size than the bulk, the optical bandgap in the as synthesized materials is found to be 2.9 eV compared to the reported value of 3.6 eV for bulk SnO2 particles. The yellow-green photoluminescence emissions and the observed narrowing of the bandgap can be attributed to the deep donor levels of oxygen vacancies, owing to the high exothermicity of the combustion reaction and the faster cooling rates involved in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach is presented for achieving an enhanced photo-response in a few layer graphene (FLG) based photodetector that is realized by introducing defect sites in the FLG. Fabrication induced wrinkle formation in graphene presented a four-fold enhancement in the photocurrent when compared to unfold PLC. Interestingly, it was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A correlation between gas sensing properties and defect induced Room Temperature Ferromagnetism (RTFM) is demonstrated in non-stoichiometric SnO2 prepared by solution combustion method. The presence of oxygen vacancies (V-O), confirmed by RTFM is identified as the primary factor for enhanced gas sensing effect. The as-prepared SnO2 shows high saturation magnetization of similar to 0.018 emu/g as compared to similar to 0.002 and similar to 0.0005 emu/g in annealed samples and SnO2 prepared by precipitation respectively. The SnO2 prepared by precipitation which is an equilibrium method of synthesis shows lesser defects compared to the combustion product and hence exhibits lesser sensitivity in spite of smaller crystallite size. The study utilizes RTFM as a potential tool to characterize metal oxide gas sensors and recognizes the significance of oxygen vacancies in sensing mechanism over the microstructure. (C) 2014 AIP Publishing LLC.