815 resultados para Decision-support tools
Resumo:
The risks associated with gestational diabetes (GD) can be reduced with an active treatment able to improve glycemic control. Advances in mobile health can provide new patient-centric models for GD to create personalized health care services, increase patient independence and improve patients’ self-management capabilities, and potentially improve their treatment compliance. In these models, decision-support functions play an essential role. The telemedicine system MobiGuide provides personalized medical decision support for GD patients that is based on computerized clinical guidelines and adapted to a mobile environment. The patient’s access to the system is supported by a smartphone-based application that enhances the efficiency and ease of use of the system. We formalized the GD guideline into a computer-interpretable guideline (CIG). We identified several workflows that provide decision-support functionalities to patients and 4 types of personalized advice to be delivered through a mobile application at home, which is a preliminary step to providing decision-support tools in a telemedicine system: (1) therapy, to help patients to comply with medical prescriptions; (2) monitoring, to help patients to comply with monitoring instructions; (3) clinical assessment, to inform patients about their health conditions; and (4) upcoming events, to deal with patients’ personal context or special events. The whole process to specify patient-oriented decision support functionalities ensures that it is based on the knowledge contained in the GD clinical guideline and thus follows evidence-based recommendations but at the same time is patient-oriented, which could enhance clinical outcomes and patients’ acceptance of the whole system.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
This work proceeds from the assumption that a European environmental information and communication system (EEICS) is already established. In the context of primary users (land-use planners, conservationists, and environmental researchers) we ask what use may be made of the EEICS for building models and tools which is of use in building decision support systems for the land-use planner. The complex task facing the next generation of environmental and forest modellers is described, and a range of relevant modelling approaches are reviewed. These include visualization and GIS; statistical tabulation and database SQL, MDA and OLAP methods. The major problem of noncomparability of the definitions and measures of forest area and timber volume is introduced and the possibility of a model-based solution is considered. The possibility of using an ambitious and challenging biogeochemical modelling approach to understanding and managing European forests sustainably is discussed. It is emphasised that all modern methodological disciplines must be brought to bear, and a heuristic hybrid modelling approach should be used so as to ensure that the benefits of practical empirical modelling approaches are utilised in addition to the scientifically well-founded and holistic ecosystem and environmental modelling. The data and information system required is likely to end up as a grid-based-framework because of the heavy use of computationally intensive model-based facilities.
Resumo:
Nowadays, companies are living great difficulties on managing their business due to constant and unpredictable economic market fluctuations. Recent changes in market trends (such as the constant demand for new products and services, mass customization and the drastic reduction of delivery time) lead companies to adopt strategies of creating partnerships with other companies as a way to respond effectively to such difficult economical times. Collaborative Networks’ concept born by the consequence of companies could no longer consider their internal business processes’ management as sufficient and tend to seek for a collaborative approach with other partners for their critical processes. Information technologies (ICT) assumed a major role acting as “enablers” of these kinds of networks, enhancing information sharing and business process integration. Several new trends concerning ICT architectures have been created to support collaborative networks requirements, but still doesn’t exist a common platform to reduce the needed integration effort on virtual organizations. This study aims to investigate the current technological solutions available in the market which enhances the management of companies’ business processes (specially, Collaborative Planning). Finally, the research work ends with the presentation of a conceptual model to answer to the constraints evaluated.
Resumo:
The importance of broadening community participation in environmental decision-making is widely recognized and lack of participation in this process appears to be a perennial problem. In this context, there have been calls from some academics for the more extensive use of geographic information systems (GIS) and distance learning technologies, accessible via the Internet, as a possible means to inform and empower communities. However, a number of problems exist. For instance, at present the scope for online interaction between policy-makers and citizens is currently limited. Contemporary web-based environmental information systems suffer from this lack of interactivity on the one hand and on the other hand from the apparent complexity for the lay user. This paper explores the issue of online community participation at the local level and attempts to construct a framework for a new (and potentially more effective) model of online participatory decision-making. The key components, system architecture and stages of such a model are introduced. This model, referred to as a ‘Community Based Interactive Environmental Decision Support System’, incorporates advanced information technologies, distance learning and community involvement tools which will be applied and evaluated in the field through a pilot project in Tokyo in the summer of 2002.
Resumo:
Decision Support System (DSS) has played a significant role in construction project management. This has been proven that a lot of DSS systems have been implemented throughout the whole construction project life cycle. However, most research only concentrated in model development and left few fundamental aspects in Information System development. As a result, the output of researches are complicated to be adopted by lay person particularly those whom come from a non-technical background. Hence, a DSS should hide the abstraction and complexity of DSS models by providing a more useful system which incorporated user oriented system. To demonstrate a desirable architecture of DSS particularly in public sector planning, we aim to propose a generic DSS framework for consultant selection. It will focus on the engagement of engineering consultant for irrigation and drainage infrastructure. The DSS framework comprise from operational decision to strategic decision level. The expected result of the research will provide a robust framework of DSS for consultant selection. In addition, the paper also discussed other issues that related to the existing DSS framework by integrating enabling technologies from computing. This paper is based on the preliminary case study conducted via literature review and archival documents at Department of Irrigation and Drainage (DID) Malaysia. The paper will directly affect to the enhancement of consultant pre-qualification assessment and selection tools. By the introduction of DSS in this area, the selection process will be more efficient in time, intuitively aided qualitative judgment, and transparent decision through aggregation of decision among stakeholders.
Resumo:
Most infrastructure projects share the same characteristics in term of management aspects and shortcomings. Human factor is believed to be the major drawbacks due to the nature of unstructured problems which can further contribute to management conflicts. This growing complexity in infrastructure projects has shift the paradigm of policy makers to adopt Information Communication Technology (ICT) as a driving force. For this reason, it is vital to fully maximise and utilise the recent technologies to accelerate management process particularly in planning phase. Therefore, a lot of tools have been developed to assist decision making in construction project management. The variety of uncertainties and alternatives in decision making can be entertained by using useful tool such as Decision Support System (DSS). However, the recent trend shows that most DSS in this area only concentrated in model development and left few fundamentals of computing. Thus, most of them were found complicated and less efficient to support decision making within project team members. Due to the current incapability of many software aspects, it is desirable for DSS to provide more simplicity, better collaborative platform, efficient data manipulation and reflection to user needs. By considering these factors, the paper illustrates four challenges for future DSS development i.e. requirement engineering, communication framework, data management and interoperability, and software usability
Resumo:
The development of highway infrastructure typically requires major capital input over a long period. This often causes serious financial constraints for investors. The push for sustainability has added new dimensions to the complexity in the evaluation of highway projects, particularly on the cost front. This makes the determination of long-term viability even more a precarious exercise. Life-cycle costing analysis (LCCA) is generally recognised as a valuable tool for the assessment of financial decisions on construction works. However to date, existing LCCA models are deficient in dealing with sustainability factors, particularly for infrastructure projects due to their inherent focus on the economic issues alone. This research probed into the major challenges of implementing sustainability in highway infrastructure development in terms of financial concerns and obligations. Using results of research through literature review, questionnaire survey of industry stakeholders and semi-structured interview of senior practitioners involved in highway infrastructure development, the research identified the relative importance of cost components relating to sustainability measures and on such basis, developed ways of improving existing LCCA models to incorporate sustainability commitments into long-term financial management. On such a platform, a decision support model incorporated Fuzzy Analytical Hierarchy Process and LCCA for the evaluation of the specific cost components most concerned by infrastructure stakeholders. Two real highway infrastructure projects in Australia were then used for testing, application and validation, before the decision support model was finalised. Improved industry understanding and tools such as the developed model will lead to positive sustainability deliverables while ensuring financial viability over the lifecycle of highway infrastructure projects.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Infrastructure forms a vital component in supporting today’s way of life and has a significant role or impact on economic, environmental and social outcomes of the region around it. The design, construction and operation of such assets are a multi-billion dollar industry in Australia alone. Another issue that will play a major role in our way life is that of climate change and the greater concept of sustainability. With limited resources and a changing natural world it is necessary for infrastructure to be developed and maintained in a manner that is sustainable. In order to achieve infrastructure sustainability in operations it is necessary for there to be: a sustainability assessment scheme that provides a scientifically sound and realistic approach to measuring an assets level of sustainability; and, systems and tools to support the making of decisions that result in sustainable outcomes by providing feedback in a timely manner. Having these in place will then help drive the consideration of sustainability during the decision making process for infrastructure operations and maintenance. In this paper we provide two main contributions; a comparison and review of sustainability assessment schemes for infrastructure and their suitability for use in the operations phase; and, a review of decision support systems/tools in the area of infrastructure sustainability in operations. For this paper, sustainability covers not just the environment, but also finance/economic and societal/community aspects as well. This is often referred to as the Triple Bottom Line and forms one of the three dimensions of corporate sustainability [Stapledon, 2004].
Resumo:
Nowadays, most of the infrastructure development projects undertaken are complex in nature. Practically, public clients who do not have a good understanding of the design and management may suffer severe losses, especially for infrastructure projects. There is a need for luring the right consultant to secure client's investment in infrastructure developments. Throughout the project life cycle, consultants play vital role from the inception to completion stage of a project. A few studies in Malaysia show that infrastructure projects involving irrigation and drainage have experience problems such as poor workmanship, delay and cost overrun due to the consultant's inability or the client incompetence of recruiting consultants in time. This highlights the need of aided decision making and an efficient system to select the best consultant by using Decision Support System (DSS). On the other hand, recent trends reveal that most DSS in construction only concentrate on decision model development. These models are impractical and unused as they are complicated or difficult for laymen such as project managers to utilize. Thus, this research attempts to develop an efficient DSS for consultant selection namely consultDeSS. Driven by the motivation and research aims, this study deployed Design Science Research Methodology (DSRM) dominant with a combination of case studies at the Malaysian Department of Irrigation and Drainage (DID). Two real projects involving irrigation and drainage infrastructure were used to design, implement and evaluate the artefact. The 3-tier consultDeSS was revised after the evaluation and the design was significantly improved based on user feedback. By developing desirable tools that fit client's needs will enhance the productivity and minimize conflict within groups and organisations. The tool is more usable and efficient compared to previous studies in construction. Thus, this research has demonstrated a purposeful artefact with a practical and valid structured development approach that is applicable in a variety of problems in construction discipline.
Resumo:
There is an increasing awareness of sustainability and climate change and its impact on infrastructure and engineering asset management in design, construction, and operations. Sustainability rating tools have been proposed and/or developed that provide ratings of infrastructure projects in differing phases of their life cycle on sustainability. This paper provides an overview of decision support systems using sustainability rating framework that can be used to prioritize or select tasks and activities within projects to enhance levels of sustainability outcomes. These systems can also be used to prioritize projects within an organization to optimize sustainability outcomes within an allocated budget.
Resumo:
Researchers developing climate-based forecasts, workshops, software tools and information to aid grazier decisions undertook an evaluation study to enhance planning and benchmark impact. One hundred graziers in Western Queensland were randomly selected from 7 shires and surveyed by mail and telephone (43 respondents) to explore levels of knowledge and use of climate information, practices and information needs. We found 36% of respondents apply the Southern Oscillation Index to property decisions but 92% were unaware El Niño Southern Oscillation’s predictive signal in the region is greater for pasture growth than rainfall, suggesting they may not recognise the potential of pasture growth forecasts. Almost 75% of graziers consider they are conservative or risk averse in their attitude to managing their enterprise. Mail respondents (n= 20) if given a 68%, on average, probability of exceeding median rainfall forecast may change a decision; almost two-thirds vary stocking rate based on forage available, last year’s pasture growth or the Southern Oscillation Index; the balance maintain a constant stocking rate strategy; 90% have access to a computer; 75% to the internet and 95% have a fax. This paper presents findings of the study and draws comparisons with a similar study of 174 irrigators in the Northern Murray-Darling Basin (Aust. J. Exp. Ag. 44, 247-257). New insights and information gained are helping the team better understand client needs and plan, design and extend tools and information tailored to grazier knowledge, practice, information needs and preferences. Results have also provided a benchmark against which to measure project impact and have influenced the team to make important changes to their project planning, activities and methods for transferring technology tailored to grazier preferences.
Resumo:
Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.