795 resultados para Decision support system
Resumo:
Maternal deaths have been a critical issue for women living in rural and remote areas. The need to travel long distances, the shortage of primary care providers such as physicians, specialists and nurses, and the closing of small hospitals have been problems identified in many rural areas. Some research work has been undertaken and a few techniques have been developed to remotely measure the physiological condition of pregnant women through sophisticated ultrasound equipment. There are numerous ways to reduce maternal deaths, and an important step is to select the right approaches to achieving this reduction. One such approach is the provision of decision support systems in rural and remote areas. Decision support systems (DSSs) have already shown a great potential in many health fields. This thesis proposes an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s á and Classification Tree were incorporated in the iDSS. The decision support system was developed with significant variables such as: Place of residence, Seeing the same doctor, Education, Tetanus injection, Baby weight, Previous baby born, Place of birth, Assisted delivery, Pregnancy parity, Doctor visits and Occupation. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcomes of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women. On conditional system was sent and validated by the gynaecologist. Another outcome of ingenious decision support system was to provide better pregnancy health awareness and reduce long distance travel, especially for women in rural areas. The proposed system has qualities such as usefulness, accuracy and accessibility.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
This paper addresses development of an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s α and Classification Tree were incorporated in the iDSS. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcome of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women.
Resumo:
Nowadays, most of the infrastructure development projects undertaken are complex in nature. Practically, public clients who do not have a good understanding of the design and management may suffer severe losses, especially for infrastructure projects. There is a need for luring the right consultant to secure client's investment in infrastructure developments. Throughout the project life cycle, consultants play vital role from the inception to completion stage of a project. A few studies in Malaysia show that infrastructure projects involving irrigation and drainage have experience problems such as poor workmanship, delay and cost overrun due to the consultant's inability or the client incompetence of recruiting consultants in time. This highlights the need of aided decision making and an efficient system to select the best consultant by using Decision Support System (DSS). On the other hand, recent trends reveal that most DSS in construction only concentrate on decision model development. These models are impractical and unused as they are complicated or difficult for laymen such as project managers to utilize. Thus, this research attempts to develop an efficient DSS for consultant selection namely consultDeSS. Driven by the motivation and research aims, this study deployed Design Science Research Methodology (DSRM) dominant with a combination of case studies at the Malaysian Department of Irrigation and Drainage (DID). Two real projects involving irrigation and drainage infrastructure were used to design, implement and evaluate the artefact. The 3-tier consultDeSS was revised after the evaluation and the design was significantly improved based on user feedback. By developing desirable tools that fit client's needs will enhance the productivity and minimize conflict within groups and organisations. The tool is more usable and efficient compared to previous studies in construction. Thus, this research has demonstrated a purposeful artefact with a practical and valid structured development approach that is applicable in a variety of problems in construction discipline.
Resumo:
In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.
Resumo:
Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.
Resumo:
There is an increasing awareness of sustainability and climate change and its impact on infrastructure and engineering asset management in design, construction, and operations. Sustainability rating tools have been proposed and/or developed that provide ratings of infrastructure projects in differing phases of their life cycle on sustainability. This paper provides an overview of decision support systems using sustainability rating framework that can be used to prioritize or select tasks and activities within projects to enhance levels of sustainability outcomes. These systems can also be used to prioritize projects within an organization to optimize sustainability outcomes within an allocated budget.
Resumo:
Decision-making is such an integral aspect in health care routine that the ability to make the right decisions at crucial moments can lead to patient health improvements. Evidence-based practice, the paradigm used to make those informed decisions, relies on the use of current best evidence from systematic research such as randomized controlled trials. Limitations of the outcomes from randomized controlled trials (RCT), such as “quantity” and “quality” of evidence generated, has lowered healthcare professionals’ confidence in using EBP. An alternate paradigm of Practice-Based Evidence has evolved with the key being evidence drawn from practice settings. Through the use of health information technology, electronic health records (EHR) capture relevant clinical practice “evidence”. A data-driven approach is proposed to capitalize on the benefits of EHR. The issues of data privacy, security and integrity are diminished by an information accountability concept. Data warehouse architecture completes the data-driven approach by integrating health data from multi-source systems, unique within the healthcare environment.
Resumo:
A decision support system has been developed in Queensland to evaluate how changes in silvicultural regimes affect wood quality, and specifically the graded recovery of structural timber. Models of tree growth, branch architecture and wood properties were developed from data collected in routine Caribbean pine plantations and specific silvicultural experiments. These models were incorporated in software that simulates the conversion of standing trees into logs, and the logs into boards, and generates detailed data on knot location and basic density distribution. The structural grade of each board was determined by simulating the machine stress-grading process, and the predicted graded recovery provided an indicator of wood value. The decision support system improves the basis of decision-making by simulating the performance of elite genetic material under specified silvicultural regimes and by predicting links between wood quality and general stand attributes such as stocking and length of rotation.
Resumo:
Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.
Resumo:
Information visualization is a process of constructing a visual presentation of abstract quantitative data. The characteristics of visual perception enable humans to recognize patterns, trends and anomalies inherent in the data with little effort in a visual display. Such properties of the data are likely to be missed in a purely text-based presentation. Visualizations are therefore widely used in contemporary business decision support systems. Visual user interfaces called dashboards are tools for reporting the status of a company and its business environment to facilitate business intelligence (BI) and performance management activities. In this study, we examine the research on the principles of human visual perception and information visualization as well as the application of visualization in a business decision support system. A review of current BI software products reveals that the visualizations included in them are often quite ineffective in communicating important information. Based on the principles of visual perception and information visualization, we summarize a set of design guidelines for creating effective visual reporting interfaces.
Resumo:
Background: Bhutan has reduced its malaria incidence significantly in the last 5 years, and is aiming for malaria elimination by 2016. To assist with the management of the Bhutanese malaria elimination programme a spatial decision support system (SDSS) was developed. The current study aims to describe SDSS development and evaluate SDSS utility and acceptability through informant interviews. Methods: The SDSS was developed based on the open-source Quantum geographical information system (QGIS) and piloted to support the distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in the two sub-districts of Samdrup Jongkhar District. It was subsequently used to support reactive case detection (RACD) in the two sub-districts of Samdrup Jongkhar and two additional sub-districts in Sarpang District. Interviews were conducted to ascertain perceptions on utility and acceptability of 11 informants using the SDSS, including programme and district managers, and field workers. Results: A total of 1502 households with a population of 7165 were enumerated in the four sub-districts, and a total of 3491 LLINs were distributed with one LLIN per 1.7 persons. A total of 279 households representing 728 residents were involved with RACD. Informants considered that the SDSS was an improvement on previous methods for organizing LLIN distribution, IRS and RACD, and could be easily integrated into routine malaria and other vector-borne disease surveillance systems. Informants identified some challenges at the programme and field level, including the need for more skilled personnel to manage the SDSS, and more training to improve the effectiveness of SDSS implementation and use of hardware. Conclusions: The SDSS was well accepted and informants expected its use to be extended to other malaria reporting districts and other vector-borne diseases. Challenges associated with efficient SDSS use included adequate skills and knowledge, access to training and support, and availability of hardware including computers and global positioning system receivers.
Resumo:
Management of large projects, especially the ones in which a major component of R&D is involved and those requiring knowledge from diverse specialised and sophisticated fields, may be classified as semi-structured problems. In these problems, there is some knowledge about the nature of the work involved, but there are also uncertainties associated with emerging technologies. In order to draw up a plan and schedule of activities of such a large and complex project, the project manager is faced with a host of complex decisions that he has to take, such as, when to start an activity, for how long the activity is likely to continue, etc. An Intelligent Decision Support System (IDSS) which aids the manager in decision making and drawing up a feasible schedule of activities while taking into consideration the constraints of resources and time, will have a considerable impact on the efficient management of the project. This report discusses the design of an IDSS that helps in project planning phase through the scheduling phase. The IDSS uses a new project scheduling tool, the Project Influence Graph (PIG).
Resumo:
Energy plays a prominent role in human society. As a result of technological and industrial development,the demand for energy is rapidly increasing. Existing power sources that are mainly fossil fuel based are leaving an unacceptable legacy of waste and pollution apart from diminishing stock of fuels.Hence, the focus is now shifted to large-scale propagation of renewable energy. Renewable energy technologies are clean sources of energy that have a much lower environmental impact than conventional energy technologies. Solar energy is one such renewable energy. Most renewable energy comes either directly or indirectly from the sun. Estimation of solar energy potential of a region requires detailed solar radiation climatology, and it is necessary to collect extensive radiation data of high accuracy covering all climatic zones of the region. In this regard, a decision support system (DSS)would help in estimating solar energy potential considering the region’s energy requirement.This article explains the design and implementation of DSS for assessment of solar energy. The DSS with executive information systems and reporting tools helps to tap vast data resources and deliver information. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in time and can be used by decision-making bodies to assess various scenarios. It also offers means of entering, accessing, and interpreting the information for the purpose of sound decision making.