951 resultados para Decaimento do mRNA nonstop (NSD)
Resumo:
Lung cancer is the most important cause of cancer-related mortality. Resectability and eligibility for treatment with adjuvant chemotherapy is determined by staging according to the TNM classification. Other determinants of tumour behaviour that predict disease outcome, such as molecular markers, may improve decision-making. Activation of the gene encoding human telomerase reverse transcriptase (hTERT) is implicated in the pathogenesis of lung cancer, and consequently detection of hTERT mRNA might have prognostic value for patients with early stage lung cancer. A cohort of patients who underwent a complete resection for early stage lung cancer was recruited as part of the European Early Lung Cancer (EUELC) project. In 166 patients expression of hTERT mRNA was determined in tumour tissue by quantitative real-time RT-PCR and related to that of a house-keeping gene (PBGD). Of a subgroup of 130 patients tumour-distant normal tissue was additionally available for hTERT mRNA analysis. The correlation between hTERT levels of surgical samples and disease-free survival was determined using a Fine and Gray hazard model. Although hTERT mRNA positivity in tumour tissue was significantly associated with clinical stage (Fisher's exact test p=0.016), neither hTERT mRNA detectability nor hTERT mRNA levels in tumour tissue were associated with clinical outcome. Conversely, hTERT positivity in adjacent normal samples was associated with progressive disease, 28% of patients with progressive disease versus 7.5% of disease-free patients had detectable hTERT mRNA in normal tissue [adjusted HR: 3.60 (1.64-7.94), p=0.0015]. hTERT mRNA level in tumour tissue has no prognostic value for patients with early stage lung cancer. However, detection of hTERT mRNA expression in tumour-distant normal lung tissue may indicate an increased risk of progressive disease.
Resumo:
In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.
Resumo:
Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.
Resumo:
We have previously observed in vitro that some stromal proteinases (MMP- 2, MT1-MMP) were expressed or activated by invasive carcinoma cell lines exhibiting mesenchymal features, presumably acquired through an epithelial to mesenchymal transition (EMT). To examine the potential contribution of c- ets-1 to this phenotype, we have compared here the expression of c-ets-1 with invasiveness in vitro and expression of vimentin, E-cadherin, uPA, MMP-1 and MMP-3 in a panel of human breast cancer cell lines. Our results clearly demonstrate an association between c-ets-1 expression and the invasive, EMT- derived phenotype, which is typified by the expression of vimentin and the lack of E-cadherin. While absent from the two non-invasive, vimentin-negative cell lines, c-ets-1 was abundantly expressed in all the four vimentin- positive lines. However, we could not find a clear quantitative or qualitative relationship between the expression of c-ets-1 and the three proteinases known to he regulated by c-ets-1, except that when they were expressed, it was only in the invasive c-ets-1-positive lines. UPA mRNAs were found in three of the four vimentin-positive lines, MMP-1 in two of the four, and MMP-3 could not be detected in any of the cell lines. Intriguingly, MDA- MB-435 cells, which exhibit the highest metastatic potential of these cell lines in nude mice, expressed vimentin and c-ets-1, but lacked expression of these three proteinases, at least under the culture conditions employed. Taken together, our results show that c-ets-1 expression is associated with an invasive, EMT-derived phenotype in breast cancer cells, although it is apparently not sufficient to ensure the expression of uPA, MMP-1 or MMP-3, in the vimentin-positive cells. Such proteases regulation is undoubtedly qualified by the cellular context. This study therefore advances our understanding of the molecular regulation of invasiveness in EMT-associated carcinoma progression, and suggests that c-ets-1 may contribute to the invasive phenotype in carcinoma cells.
Resumo:
BACKGROUND AND OBJECTIVES Polymorphisms of the VEGF gene are known to affect the biological behaviour of cancers but have seldom been studied in thyroid cancer. The aim of the current study is to evaluate the prevalence and relevance of VEGF-A polymorphisms and mRNA expression in papillary thyroid carcinoma (PTC). MATERIALS AND METHODS Genomic DNA and total RNA were isolated from paraffin-embedded tissue from 91 PTC (51 conventional PTC and 40 follicular variant) and 78 control thyroid tissues. Three DNA polymorphisms (+936C > T, +405C > G and -141A > C) in the 3' and 5' untranslated region (3'-UTR, 5'-UTR) of VEGF-A were studied using PCR and RFLP. Also, the mRNA expression of VEGF-A in these tissues was studied by real-time PCR. RESULTS Distribution of polymorphisms in the 5'-UTR (VEGF-VEGF -141A > C and +405C > G) and 3'-UTR (VEGF +936C > T) were all significantly different in PTC and benign thyroid tissue (p = 0.0001, 0.001 and 0.028 respectively). The VEGF -141 C allele was more common in PTC with lymph node metastases (p = 0.026). VEGF + 405 Galleles andVEGF +936 CC genotype were more common in PTC of advanced pathological staging (p = 0.018 and 0.017 respectively). Also, increased expression of VEGF-A mRNA was noted in PTC compared to control (p = 0.009). Within the group of patients with conventional PTC, those with lymph nodal metastases had a higher level of VEGF-A mRNA expression than other patients (p = 0.0003). CONCLUSION These findings suggest that VEGF polymorphisms and mRNA expression may predict the aggressiveness behaviour of thyroid cancer.
Resumo:
Here we report that the Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encodes a 29-kDa cytoplasmic protein that binds to mRNA in vivo. Rbp29p can be co-immunoprecipitated with the poly(A) tail-binding protein Pab1p from crude yeast extracts in a dosageand RNA-dependent manner. In addition, recombinant Rbp29p binds preferentially to poly(A) with nanomolar binding affinity in vitro. Although RBP29 is not essential for cell viability, its deletion exacerbates the slow growth phenotype of yeast strains harboring mutations in the eIF4G genes TIF4631 and TIF4632. Furthermore, overexpression of RBP29 suppresses the temperaturesensitive growth phenotype of specific tif4631, tif4632, and pab1 alleles. These data suggest that Rbp29p is an mRNA-binding protein that plays a role in modulating the expression of cytoplasmic mRNA.
Resumo:
Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Independent functions of yeast Pcf11p in pre-mRNA 3' end processing and in transcription termination
Resumo:
Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre‐mRNA 3′ end processing, binds to the C‐terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3′ end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3′ end processing activity of Pcf11p and a deficiency of Pcf11p in 3′ end processing did not prevent CTD binding. Transcriptional run‐on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.
Resumo:
Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.
Resumo:
Purpose We determined the effect of reduced muscle glycogen availability on cellular pathways regulating mitochondrial biogenesis and substrate utilization after a bout of resistance exercise. Methods Eight young, recreationally trained men undertook a glycogen depletion protocol of one-leg cycling to fatigue (LOW), while the contralateral (control) leg rested (CONT). Following an overnight fast, subjects completed 8 sets of 5 unilateral leg press repetitions (REX) at 80 % 1 Repetition Maximum (1RM) on each leg. Subjects consumed 500 mL protein/CHO beverage (20 g whey + 40 g maltodextrin) upon completion of REX and 2 h later. Muscle biopsies were obtained at rest and 1 and 4 h after REX in both legs. Results Resting muscle glycogen was higher in the CONT than LOW leg (~384 ± 114 vs 184 ± 36 mmol kg−1 dry wt; P < 0.05), and 1 h and 4 h post-exercise (P < 0.05). Phosphorylation of p53Ser15 increased 1 h post-exercise in LOW (~115 %, P < 0.05) and was higher than CONT at this time point (~87 %, P < 0.05). p38MAPKThr180/Tyr182 phosphorylation increased 1 h post-exercise in both CONT and LOW (~800–900 %; P < 0.05) but remained above rest at 4 h only in CONT (~585 %, P < 0.05; different between legs P < 0.05). Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) mRNA was elevated 4 h post-exercise in LOW (~200 %, P < 0.05; different between legs P < 0.05). There were no changes in Fibronectin type III domain-containing protein 5 (FNDC5) mRNA for CONT or LOW legs post-exercise. Conclusion Undertaking resistance exercise with low glycogen availability may enhance mitochondrial-related adaptations through p53 and PGC-1α-mediated signalling.
Resumo:
IL-2, IL-4 and IFN-γ mRNA expression, and production of IFN-γ was examined in mesenteric lymph node cells (MLNC) and CD4+ enriched T cell populations of nematode resistant (R) and susceptible (S) line lambs by use of RT-PCR and ELISA. Five R and S line lambs that were immunised by repeated oxfendazole-abbreviated infections and 5 non-immunised R and S line lambs were used. All lambs grazed nematode infected pasture for 107 days. Immunisation enhanced the resistant status in both R and S lambs. MLNC obtained from slaughtered animals were stimulated with Con A or T. colubriformis specific antigen. Non-stimulated MLNC of immunised lambs expressed higher levels of IL-4 mRNA and lower levels of IL-2 mRNA than non-immunised lambs. MLNC of immunised R and S line lambs stimulated with antigen for 24 h expressed detectable amounts of IL-4 mRNA that was not seen in non-immunised controls. CD4+ T cell enriched cell populations of immunised R and S lambs and non-immunised R lambs expressed moderate to high levels of IL-4 mRNA. Con A stimulated MLNC of immunised R and S lambs expressed high levels IFN-γ mRNA and produced high amounts of IFN-γ. Lower levels were present in non-immunised controls. The results indicate that R line lambs and immunised S line lambs respond to natural nematode challenge with a predominating IL-4 cytokine response when compared to non-immunised S lambs.
Resumo:
Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10-12) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P tdthomlt; 10-14). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.
Resumo:
Purified rinderpest virus was earlier shown to transcribe in vitro, all virus-specific mRNAs with the promoter-proximal N mRNA being the most abundant. Presently, this transcription system has been shown to synthesize full length monocistronic mRNAs comparable to those made in infected cells. Small quantities of bi- and tricistronic mRNAs are also synthesized. Rinderpest virus synthesizes in vitro, a leader RNA of not, vert, similar 55 nucleotides in length. Purified rinderpest virus also exhibits RNA editing activity during the synthesis of P mRNA as shown by primer extension analysis of the mRNA products.