996 resultados para Death receptors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antibody targeting of drug substances can improve the efficacy of the active molecule, improving distribution and concentration of the drug at the site of injury/disease. Encapsulation of drug substances into polymeric nanoparticles can also improve the therapeutic effects of such compounds by protecting the molecule until its action is required. In this current study, we have brought together these two rationales to develop a novel immunonanoparticle with improved therapeutic effect against colorectal tumor cells. This nanoparticle comprised a layer of peripheral antibodies (Ab) directed toward the Fas receptor (CD95/Apo-1) covalently attached to poly(lactide-co-glycolide) nanoparticles (NP) loaded with camptothecin. Variations in surface carboxyl density permitted up to 48.5 mu g coupled Ab per mg of NP and analysis of nanoparticulate cores showed efficient camptothecin loading. Fluorescence visualization studies confirmed internalization of nanoconstructs into endocytic compartments of HCT 116 cells, an effect not evident in NP without superficial Ab. Cytotoxicity studies were then carried out against HCT116 cells. After 72 h, camptothecin solution resulted in an IC50 of 21.8 ng mL(-1). Ab-directed delivery of NP-encapsulated camptothecin was shown to be considerably more effective with an IC50 of 0.37 ng mL(-1). Calculation of synergistic ratios for these nanoconstructs demonstrated synergy of pharmacological relevance. Indeed, the results in this paper suggest that the attachment of anti-Fas antibodies to camptothecin-loaded nanoparticles may result in a therapeutic strategy that could have potential in the treatment of tumors expressing death receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FLIP is a potential anti-cancer therapeutic target that inhibits apoptosis by blocking caspase 8 activation by death receptors. We report a novel interaction between FLIP and the DNA repair protein Ku70 that regulates FLIP protein stability by inhibiting its polyubiquitination. Furthermore, we found that the histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) enhances the acetylation of Ku70, thereby disrupting the FLIP/Ku70 complex and triggering FLIP polyubiquitination and degradation by the proteasome. Using in vitro and in vivo colorectal cancer models, we further demonstrated that SAHA-induced apoptosis is dependant on FLIP downregulation and caspase 8 activation. In addition, an HDAC6-speci?c inhibitor Tubacin recapitulated the effects of SAHA, suggesting that HDAC6 is a key regulator of Ku70 acetylation and FLIP protein stability. Thus, HDAC inhibitors with anti-HDAC6 activity act as ef?cient post-transcriptional suppressors of FLIP expression and may, therefore, effectively act as ‘FLIP inhibitors’ © 2012 Macmillan Publishers Limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’élimination des cellules infectées par apoptose constitue un mécanisme de défense antivirale. Les virus de l’herpès simplex (HSV) de type 1 et 2 encodent des facteurs qui inhibent l’apoptose induite par la réponse antivirale. La sous-unité R1 de la ribonucléotide réductase d’HSV-2 (ICP10) possède une fonction anti-apoptotique qui protège les cellules épithéliales de l’apoptose induite par les récepteurs de mort en agissant en amont ou au niveau de l’activation de la procaspase-8. Puisqu’une infection avec un mutant HSV-1 déficient pour la R1 diminue la résistance des cellules infectées vis à vis du TNFα, il a été suggéré que la R1 d’HSV-1 (ICP6) pourrait posséder une fonction anti-apoptotique. Le but principal de cette thèse est d’étudier le mécanisme et le potentiel de la fonction anti-apoptotique de la R1 d’HSV-1 et de la R1 d'HSV-2. Dans une première étude, nous avons investigué le mécanisme de la fonction anti-apoptotique de la R1 d’HSV en utilisant le TNFα et le FasL, deux inducteurs des récepteurs de mort impliqués dans la réponse immune anti-HSV. Cette étude a permis d’obtenir trois principaux résultats concernant la fonction anti-apoptotique de la R1 d’HSV. Premièrement, la R1 d’HSV-1 inhibe l’apoptose induite par le TNFα et par le FasL aussi efficacement que la R1 d’HSV-2. Deuxièmement, la R1 d’HSV-1 est essentielle à l’inhibition de l’apoptose induite par le FasL. Troisièmement, la R1 d’HSV interagit constitutivement avec la procaspase-8 d’une manière qui inhibe la dimérisation et donc l’activation de la caspase-8. Ces résultats suggèrent qu’en plus d’inhiber l’apoptose induite par les récepteurs de mort la R1 d’HSV peut prévenir l’activation de la caspase-8 induite par d’autres stimuli pro-apoptotiques. Les ARN double-brins (ARNdb) constituant un intermédiaire de la transcription du génome des HSV et activant l’apoptose par une voie dépendante de la caspase-8, nous avons testé dans une seconde étude l’impact de la R1 d’HSV sur l’apoptose induite par l’acide polyriboinosinique : polyribocytidylique (poly(I:C)), un analogue synthétique des ARNdb. Ces travaux ont montré qu’une infection avec les HSV protège les cellules épithéliales de l’apoptose induite par le poly(I:C). La R1 d’HSV-1 joue un rôle majeur dans l’inhibition de l’activation de la caspase-8 induite par le poly(I:C). La R1 d’HSV interagit non seulement avec la procaspase-8 mais aussi avec RIP1 (receptor interacting protein 1). En interagissant avec RIP1, la R1 d’HSV-2 inhibe l’interaction entre RIP1 et TRIF (Toll/interleukine-1 receptor-domain-containing adapter-inducing interferon β), l’adaptateur du Toll-like receptor 3 qui est un détecteur d’ARNdb , laquelle est essentielle pour signaler l’apoptose induite par le poly(I:C) extracellulaire et la surexpression de TRIF. Ces travaux démontrent la capacité de la R1 d’HSV à inhiber l’apoptose induite par divers stimuli et ils ont permis de déterminer le mécanisme de l’activité anti-apoptotique de la R1 d’HSV. Très tôt durant l’infection, cFLIP, un inhibiteur cellulaire de la caspase-8, est dégradé alors que la R1 d’HSV s’accumule de manière concomitante. En interagissant avec la procapsase-8 et RIP1, la R1 d’HSV se comporte comme un inhibiteur viral de l’activation de la procaspase-8 inhibant l’apoptose induite par les récepteurs de mort et les détecteurs aux ARNdb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las reacciones alérgicas a medicamentos cutáneas severas (RAM) como el Síndrome Stevens Johnson (SJS) y la Necrólisis Epidérmica Tóxica (NET),caracterizadas por exantema, erosión de la piel y las membranas mucosas, flictenas, desprendimiento de la piel secundario a la muerte de queratinocitos y compromiso ocular. Son infrecuentes en la población pero con elevada morbi-mortalidad, se presentan luego de la administración de diferentes fármacos. En Asia se ha asociado el alelo HLA-B*15:02 como marcador genético para SJS. En Colombia no hay datos de la incidencia de estas RAM, ni de la relación con medicamentos específicos o potenciales y tampoco estudios de aproximación genómica de genes de susceptibilidad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently we demonstrated that human mast cells (MC) express functional TRAIL death receptors. Here we assessed the expression of TRAIL on both mRNA and protein level in cord blood derived MC (CBMC) and HMC-1. The TRAIL release either spontaneous or induced by LPS, IFN-gamma and IgE-dependent activation, was evaluated as well. The protein location was restricted to the intracellular compartment in CBMC, but not in HMC-1. The intracellular TRAIL was not localized inside the granules. The treatment with IFN-gamma and LPS up-regulated intracellular TRAIL expression in CBMC, but did not induce its release. These in vitro data show that human MC can produce and express intracellular TRAIL whose location could not be altered by different stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theileria parasites infect and transform cells of the ruminant immune system. Continuous proliferation and survival of Theileria-transformed cells involves the well-orchestrated activation of several host-cell signalling pathways. Constitutive NF-kappa B (nuclear factor kappa B) activation is accomplished by recruiting the IKK (I kappa B kinase) complex, a central regulator of NF-kappa B pathways, to the surface of the transforming schizont, where it becomes permanently activated. Constitutive activation of the PI-3K-PKB [phosphoinositide 3-kinase-(Akt) protein kinase B] pathway is likely to be indirect and is essential for continuous proliferation. Theileria-transformed T cells express a range of anti-apoptotic proteins that can be expected to provide protection against apoptosis induced by death receptors, as well as cellular control mechanisms that are mobilised to eliminate cells that entered a cycle of uncontrolled proliferation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regulation of cell death is a key element in building up and maintaining both innate and adaptive immunity. A critical role in this process plays the tumor necrosis factor (TNF)/nerve growth factor (NGF) receptor family of death receptors. Recent work suggests that sialic acid binding immunoglobulin (Ig) -like lectins (Siglecs) are also empowered to transmit death signals, at least into myeloid cells. Strikingly, death induction by Siglecs is enhanced when cells are exposed to proinflammatory survival cytokines. Based on these recent insights, we hypothesize that at least some members of the Siglec family regulate immune responses via the activation of caspase-dependent and caspase-independent cell death pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mast cells (MC), supposedly long-lived cells, play a key role in allergy and are important contributors to other inflammatory conditions in which they undergo hyperplasia. In humans, stem cell factor (SCF) is the main regulator of MC growth, differentiation, and survival. Although human MC numbers may also be regulated by apoptotic cell death, there have been no reports concerning the role of the extrinsic apoptotic pathway mediated by death receptors in these cells. We examined expression and function of death receptors for Fas ligand and TRAIL in human MC. Although the MC leukemia cell line HMC-1 and human lung-derived MC expressed both Fas and TRAIL-R, MC lines derived from cord blood (CBMC) expressed only TRAIL-R. Activation of TRAIL-R resulted in caspase 3-dependent apoptosis of CBMC and HMC-1. IgE-dependent activation of CBMC increased their susceptibility to TRAIL-mediated apoptosis. Results suggest that TRAIL-mediated apoptosis may be a mechanism of regulating MC survival in vivo and, potentially, for down-regulating MC hyperplasia in pathologic conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elimination of autoreactive T cells by apoptosis is critical for restricting immune responses to self-antigens. An errant lytic interaction between the CD95 death receptor and its ligand CD95L is presumed to be involved in the pathogenesis of multiple sclerosis (MS). Statins are promising agents for the treatment of MS and were shown to modulate levels of soluble death receptors. Here, we evaluated the in vivo effects by interferon (IFN)-beta and atorvastatin on soluble CD95 (sCD95) and sCD95L in serum of patients with MS. Concentrations of sCD95 and sCD95L did not show any differences between MS and healthy control subjects. In patients with MS, treatment with IFN-beta increased serum levels of sCD95 and sCD95L significantly (P < 0.01 and P < 0.05 respectively). Addition of atorvastatin to IFN-beta did not alter serum levels of sCD95 and sCD95L significantly. Our study suggests that atorvastatin does not affect IFN-beta-induced increases of the soluble death receptors in the serum of patients with MS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a member of the TNF superfamily of cytokines that can induce cell death through engagement of cognate death receptors. Unlike other death receptor ligands, it selectively kills tumor cells while sparing normal cells. Preclinical studies in non-human primates have generated much enthusiasm regarding its therapeutic potential. However, many human cancer cell lines exhibit significant resistance to TRAIL-induced apoptosis, and the molecular mechanisms underling this are controversial. Possible explanations are typically cell-type dependent, but include alterations of receptor expression, enhancement of pro-apoptotic intracellular signaling molecules, and reductions in anti-apoptotic proteins. We show here that the proteasome inhibitor bortezomib (Velcade, PS-341) produces synergistic apoptosis in both bladder and prostate cancer cell lines within 4-6 hours when co-treated with recombinant human TRAIL which is associated with accumulation of p21 and cdk1/2 inhibition. Our data suggest that bortezomib's mechanism of action involves a p21-dependent enhancement of caspase maturation. Furthermore, we found enhanced tumor cell death in in vivo models using athymic nude mice. This is associated with increases in caspase-8 and caspase-3 cleavage as well as significant reductions in microvessel density (MVD) and proliferation. Although TRAIL alone had less of an effect, its biological significance as a single agent requires further investigations. Toxicity studies reveal that the combination of bortezomib and rhTRAIL has fatal consequences that can be circumvented by altering treatment schedules. Based on our findings, we conclude that this strategy has significant therapeutic potential as an anti-cancer agent. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bladder cancer is the fifth most common cancer with more than 50,000 cases diagnosed each year. Interferon-α (IFNα) is mostly used in combination with BCG for the treatment of transitional cell carcinoma (TCC). To examine the effects of IFNα on bladder cancer cells, I analyzed a panel of 20 bladder cancer cell lines in terms of their sensitivity to IFNα-induced apoptosis and the underlying mechanisms. I identified three categories: cells that die after 48hr, after 72h, and cells resistant even after 72hr of IFNα treatment. Examination of the IFN-signal transduction pathway revealed that the defect was not due to abrogation of IFN signaling. Further analysis demonstrated dependency of IFN-induced apoptosis on caspase-8, implicating the role of death receptors in IFN-induced cell death. Of the six most-IFN-sensitive cell lines, the majority upregulated Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) at the mRNA and protein level and IFN-induced cell death was mediated through TRAIL, while a minority of the most IFN-sensitive cells undergo apoptosis through a TNFα-dependent mechanism. IFNα resistance was due to either absence of TRAIL upregulation at the mRNA or protein level, resistance to exogenous rhTRAIL itself or lack of sensitization to IFN-induced cell death. Downregulation of XIAP, or XIAP inactivation through its regulator NFκB has been reported to sensitize tumor cells to death receptor-induced cell death. Baseline and IFN-inducible XIAP levels were examined in the most and least IFN-sensitive cells, knocking down XIAP and the p65 subunit of NFκB enhanced IFN-induced cell death, implicating XIAP downregulation as a mechanism through which bladder cancer cells are sensitized to IFN-induced apoptosis. To determine whether or not the proteasome inhibitor Bortezomib (BZ) sensitizes bladder cancer cells to IFN-induced cell death, the combined effects of IFN+BZ and the underlying molecular mechanisms were examined both in vitro and in vivo using two bladder xenograft models. In both models, tumor growth inhibition was the result of either increased cell death of tumor cells exerted by the two agents and/or inhibition of angiogenesis. In vitro, MAP downregulation in response to the combined treatment of IFN+BZ accounts for one of the mechanisms mediating IFN+BZ cell death in bladder cancer cells. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Despite improvement in treatment strategies, the 5-year survival rate of lung cancer patients remains low. Thus, effective chemoprevention and treatment approaches are sorely needed. Mutations and activation of KRAS occur frequently in tobacco users and the early stage of development of non-small cell lung cancers (NSCLC). So they are thought to be the primary driver for lung carcinogenesis. My work showed that KRAS mutations and activations modulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors by up-regulating death receptors and down-regulating decoy receptors. In addition, we showed that KRAS suppresses cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) expression through activation of ERK/MAPK-mediated activation of c-MYC which means the mutant KRAS cells could be specifically targeted via TRAIL induced apoptosis. The expression level of Inhibitors of Apoptosis Proteins (IAPs) in mutant KRAS cells is usually high which could be overcome by the second mitochondria-derived activator of caspases (Smac) mimetic. So the combination of TRAIL and Smac mimetic induced the synthetic lethal reaction specifically in the mutant-KRAS cells but not in normal lung cells and wild-type KRAS lung cancer cells. Therefore, a synthetic lethal interaction among TRAIL, Smac mimetic and KRAS mutations could be used as an approach for chemoprevention and treatment of NSCLC with KRAS mutations. Further data in animal experiments showed that short-term, intermittent treatment with TRAIL and Smac mimetic induced apoptosis in mutant KRAS cells and reduced tumor burden in a KRAS-induced pre-malignancy model and mutant KRAS NSCLC xenograft models. These results show the great potential benefit of a selective therapeutic approach for the chemoprevention and treatment of NSCLC with KRAS mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV), a herpesvirus that causes congenital disease and opportunistic infections in immunocompromised individuals, encodes functions that facilitate efficient viral propagation by altering host cell behavior. Here we show that CMV blocks apoptosis mediated by death receptors and encodes a mitochondria-localized inhibitor of apoptosis, denoted vMIA, capable of suppressing apoptosis induced by diverse stimuli. vMIA, a product of the viral UL37 gene, inhibits Fas-mediated apoptosis at a point downstream of caspase-8 activation and Bid cleavage but upstream of cytochrome c release, while residing in mitochondria and associating with adenine nucleotide translocator. These functional properties resemble those ascribed to Bcl-2; however, the absence of sequence similarity to Bcl-2 or any other known cell death suppressors suggests that vMIA defines a previously undescribed class of anti-apoptotic proteins.