892 resultados para Database, Image Retrieval, Browsing, Semantic Concept
Resumo:
This paper proposes a region based image retrieval system using the local colour and texture features of image sub regions. The regions of interest (ROI) are roughly identified by segmenting the image into fixed partitions, finding the edge map and applying morphological dilation. The colour and texture features of the ROIs are computed from the histograms of the quantized HSV colour space and Gray Level co- occurrence matrix (GLCM) respectively. Each ROI of the query image is compared with same number of ROIs of the target image that are arranged in the descending order of white pixel density in the regions, using Euclidean distance measure for similarity computation. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.
Resumo:
This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods
Resumo:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users’ feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved
Resumo:
Techniques to retrieve reliable images from complicated objects are described, overcoming problems introduced by uneven surfaces, giving enhanced depth resolution and improving image contrast. The techniques are illustrated with application to THz imaging of concealed wall paintings.
Resumo:
Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Relevance feedback approaches have been established as an important tool for interactive search, enabling users to express their needs. However, in view of the growth of multimedia collections available, the user efforts required by these methods tend to increase as well, demanding approaches for reducing the need of user interactions. In this context, this paper proposes a semi-supervised learning algorithm for relevance feedback to be used in image retrieval tasks. The proposed semi-supervised algorithm aims at using both supervised and unsupervised approaches simultaneously. While a supervised step is performed using the information collected from the user feedback, an unsupervised step exploits the intrinsic dataset structure, which is represented in terms of ranked lists of images. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors and different datasets. The proposed approach was also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of the proposed approach.
Resumo:
Die Molekularbiologie von Menschen ist ein hochkomplexes und vielfältiges Themengebiet, in dem in vielen Bereichen geforscht wird. Der Fokus liegt hier insbesondere auf den Bereichen der Genomik, Proteomik, Transkriptomik und Metabolomik, und Jahre der Forschung haben große Mengen an wertvollen Daten zusammengetragen. Diese Ansammlung wächst stetig und auch für die Zukunft ist keine Stagnation absehbar. Mittlerweile aber hat diese permanente Informationsflut wertvolles Wissen in unüberschaubaren, digitalen Datenbergen begraben und das Sammeln von forschungsspezifischen und zuverlässigen Informationen zu einer großen Herausforderung werden lassen. Die in dieser Dissertation präsentierte Arbeit hat ein umfassendes Kompendium von humanen Geweben für biomedizinische Analysen generiert. Es trägt den Namen medicalgenomics.org und hat diverse biomedizinische Probleme auf der Suche nach spezifischem Wissen in zahlreichen Datenbanken gelöst. Das Kompendium ist das erste seiner Art und sein gewonnenes Wissen wird Wissenschaftlern helfen, einen besseren systematischen Überblick über spezifische Gene oder funktionaler Profile, mit Sicht auf Regulation sowie pathologische und physiologische Bedingungen, zu bekommen. Darüber hinaus ermöglichen verschiedene Abfragemethoden eine effiziente Analyse von signalgebenden Ereignissen, metabolischen Stoffwechselwegen sowie das Studieren der Gene auf der Expressionsebene. Die gesamte Vielfalt dieser Abfrageoptionen ermöglicht den Wissenschaftlern hoch spezialisierte, genetische Straßenkarten zu erstellen, mit deren Hilfe zukünftige Experimente genauer geplant werden können. Infolgedessen können wertvolle Ressourcen und Zeit eingespart werden, bei steigenden Erfolgsaussichten. Des Weiteren kann das umfassende Wissen des Kompendiums genutzt werden, um biomedizinische Hypothesen zu generieren und zu überprüfen.
Resumo:
This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data (such as location data, ontology-backed search queries, in- and outdoor conditions) the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.
Resumo:
This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data – such as location data, ontology-backed search queries, in- and outdoor conditions – the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.
Resumo:
ImageCLEF is a pilot experiment run at CLEF 2003 for cross language image retrieval using textual captions related to image contents. In this paper, we describe the participation of the MIRACLE research team (Multilingual Information RetrievAl at CLEF), detailing the different experiments and discussing their preliminary results.
Resumo:
A number of neuroimaging findings have been interpreted as evidence that the left inferior frontal gyrus (IFG) subserves retrieval of semantic knowledge. We provide a fundamentally different interpretation, that it is not retrieval of semantic knowledge per se that is associated with left IFG activity but rather selection of information among competing alternatives from semantic memory. Selection demands were varied across three semantic tasks in a single group of subjects. Functional magnetic resonance imaging signal in overlapping regions of left IFG was dependent on selection demands in all three tasks. In addition, the degree of semantic processing was varied independently of selection demands in one of the tasks. The absence of left IFG activity for this comparison counters the argument that the effects of selection can be attributed solely to variations in degree of semantic retrieval. Our findings suggest that it is selection, not retrieval, of semantic knowledge that drives activity in the left IFG.
Resumo:
Lots of work has been done in texture feature extraction for rectangular images, but not as much attention has been paid to the arbitrary-shaped regions available in region-based image retrieval (RBIR) systems. In This work, we present a texture feature extraction algorithm, based on projection onto convex sets (POCS) theory. POCS iteratively concentrates more and more energy into the selected coefficients from which texture features of an arbitrary-shaped region can be extracted. Experimental results demonstrate the effectiveness of the proposed algorithm for image retrieval purposes.
Resumo:
A variety of content-based image retrieval systems exist which enable users to perform image retrieval based on colour content - i.e., colour-based image retrieval. For the production of media for use in television and film, colour-based image retrieval is useful for retrieving specifically coloured animations, graphics or videos from large databases (by comparing user queries to the colour content of extracted key frames). It is also useful to graphic artists creating realistic computer-generated imagery (CGI). Unfortunately, current methods for evaluating colour-based image retrieval systems have 2 major drawbacks. Firstly, the relevance of images retrieved during the task cannot be measured reliably. Secondly, existing methods do not account for the creative design activity known as reflection-in-action. Consequently, the development and application of novel and potentially more effective colour-based image retrieval approaches, better supporting the large number of users creating media for use in television and film productions, is not possible as their efficacy cannot be reliably measured and compared to existing technologies. As a solution to the problem, this paper introduces the Mosaic Test. The Mosaic Test is a user-based evaluation approach in which participants complete an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. In this paper, we introduce the Mosaic Test and report on a user evaluation. The findings of the study reveal that the Mosaic Test overcomes the 2 major drawbacks associated with existing evaluation methods and does not require expert participants. © 2012 Springer Science+Business Media, LLC.