920 resultados para Data- och informationsvetenskap
Resumo:
An administrative border might hinder the optimal allocation of a given set of resources by restricting the flow of goods, services, and people. In this paper we address the question: Do administrative borders lead to poor accessibility to public service such as hospitals? In answering the question, we have examined the case of Sweden and its regional borders. We have used detailed data on the Swedish road network, its hospitals, and its geo-coded population. We have assessed the population’s spatial accessibility to Swedish hospitals by computing the inhabitants’ distance to the nearest hospital. We have also elaborated several scenarios ranging from strongly confining regional borders to no confinements of borders and recomputed the accessibility. Our findings imply that administrative borders are only marginally worsening the accessibility.
Resumo:
A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.
Resumo:
Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated.
Resumo:
We develop a method for empirically measuring the difference in carbon footprint between traditional and online retailing (“e-tailing”) from entry point to a geographical area to consumer residence. The method only requires data on the locations of brick-and-mortar stores, online delivery points, and residences of the region’s population, and on the goods transportation networks in the studied region. Such data are readily available in most countries, so the method is not country or region specific. The method has been evaluated using data from the Dalecarlia region in Sweden, and is shown to be robust to all assumptions made. In our empirical example, the results indicate that the average distance from consumer residence to a brick-and-mortar retailer is 48.54 km in the studied region, while the average distance to an online delivery point is 6.7 km. The results also indicate that e-tailing increases the average distance traveled from the regional entry point to the delivery point from 47.15 km for a brick-and-mortar store to 122.75 km for the online delivery points. However, as professional carriers transport the products in bulk to stores or online delivery points, which is more efficient than consumers’ transporting the products to their residences, the results indicate that consumers switching from traditional to e-tailing on average reduce their CO2 footprints by 84% when buying standard consumer electronics products.
Resumo:
We develop a method for empirically measuring the difference in carbon footprint between traditional and online retailing (“e-tailing”) from entry point to a geographical area to consumer residence. The method only requires data on the locations of brick-and-mortar stores, online delivery points, and residences of the region’s population, and on the goods transportation networks in the studied region. Such data are readily available in most countries, so the method is not country or region specific. The method has been evaluated using data from the Dalecarlia region in Sweden, and is shown to be robust to all assumptions made. In our empirical example, the results indicate that the average distance from consumer residence to a brick-and-mortar retailer is 48.54 km in the studied region, while the average distance to an online delivery point is 6.7 km. The results also indicate that e-tailing increases the average distance traveled from the regional entry point to the delivery point from 47.15 km for a brick-and-mortar store to 122.75 km for the online delivery points. However, as professional carriers transport the products in bulk to stores or online delivery points, which is more efficient than consumers’ transporting the products to their residences, the results indicate that consumers switching from traditional to e-tailing on average reduce their CO2 footprints by 84% when buying standard consumer electronics products.
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
This thesis focuses on the adaptation of formal education to people’s technology- use patterns, theirtechnology-in-practice, where the ubiquitous use of mobile technologies is central. The research question is: How can language learning practices occuring in informal learning environments be effectively integrated with formal education through the use of mobile technology? The study investigates the technical, pedagogical, social and cultural challenges involved in a design science approach. The thesis consists of four studies. The first study systematises MALL (mobile-assisted language learning) research. The second investigates Swedish and Chinese students’ attitudes towards the use of mobile technology in education. The third examines students’ use of technology in an online language course, with a specific focus on their learning practices in informal learning contexts and their understanding of how this use guides their learning. Based on the findings, a specifically designed MALL application was built and used in two courses. Study four analyses the app use in terms of students’ perceived level of self-regulation and structuration. The studies show that technology itself plays a very important role in reshaping peoples’ attitudes and that new learning methods are coconstructed in a sociotechnical system. Technology’s influence on student practices is equally strong across borders. Students’ established technologies-in-practice guide the ways they approach learning. Hence, designing effective online distance education involves three interrelated elements: technology, information, and social arrangements. This thesis contributes to mobile learning research by offering empirically and theoretically grounded insights that shift the focus from technology design to design of information systems.
Resumo:
Research objectives Poker and responsible gambling both entail the use of the executive functions (EF), which are higher-level cognitive abilities. The main objective of this work was to assess if online poker players of different ability show different performances in their EF and if so, which functions are the most discriminating ones. The secondary objective was to assess if the EF performance can predict the quality of gambling, according to the Gambling Related Cognition Scale (GRCS), the South Oaks Gambling Screen (SOGS) and the Problem Gambling Severity Index (PGSI). Sample and methods The study design consisted of two stages: 46 Italian active players (41m, 5f; age 32±7,1ys; education 14,8±3ys) fulfilled the PGSI in a secure IT web system and uploaded their own hand history files, which were anonymized and then evaluated by two poker experts. 36 of these players (31m, 5f; age 33±7,3ys; education 15±3ys) accepted to take part in the second stage: the administration of an extensive neuropsychological test battery by a blinded trained professional. To answer the main research question we collected all final and intermediate scores of the EF tests on each player together with the scoring on the playing ability. To answer the secondary research question, we referred to GRCS, PGSI and SOGS scores. We determined which variables that are good predictors of the playing ability score using statistical techniques able to deal with many regressors and few observations (LASSO, best subset algorithms and CART). In this context information criteria and cross-validation errors play a key role for the selection of the relevant regressors, while significance testing and goodness-of-fit measures can lead to wrong conclusions. Preliminary findings We found significant predictors of the poker ability score in various tests. In particular, there are good predictors 1) in some Wisconsin Card Sorting Test items that measure flexibility in choosing strategy of problem-solving, strategic planning, modulating impulsive responding, goal setting and self-monitoring, 2) in those Cognitive Estimates Test variables related to deductive reasoning, problem solving, development of an appropriate strategy and self-monitoring, 3) in the Emotional Quotient Inventory Short (EQ-i:S) Stress Management score, composed by the Stress Tolerance and Impulse Control scores, and in the Interpersonal score (Empathy, Social Responsibility, Interpersonal Relationship). As for the quality of gambling, some EQ-i:S scales scores provide the best predictors: General Mood for the PGSI; Intrapersonal (Self-Regard; Emotional Self-Awareness, Assertiveness, Independence, Self-Actualization) and Adaptability (Reality Testing, Flexibility, Problem Solving) for the SOGS, Adaptability for the GRCS. Implications for the field Through PokerMapper we gathered knowledge and evaluated the feasibility of the construction of short tasks/card games in online poker environments for profiling users’ executive functions. These card games will be part of an IT system able to dynamically profile EF and provide players with a feedback on their expected performance and ability to gamble responsibly in that particular moment. The implementation of such system in existing gambling platforms could lead to an effective proactive tool for supporting responsible gambling.
Resumo:
Vegetation growing on railway trackbeds and embankments present potential problems. The presence of vegetation threatens the safety of personnel inspecting the railway infrastructure. In addition vegetation growth clogs the ballast and results in inadequate track drainage which in turn could lead to the collapse of the railway embankment. Assessing vegetation within the realm of railway maintenance is mainly carried out manually by making visual inspections along the track. This is done either on-site or by watching videos recorded by maintenance vehicles mainly operated by the national railway administrative body. A need for the automated detection and characterisation of vegetation on railways (a subset of vegetation control/management) has been identified in collaboration with local railway maintenance subcontractors and Trafikverket, the Swedish Transport Administration (STA). The latter is responsible for long-term planning of the transport system for all types of traffic, as well as for the building, operation and maintenance of public roads and railways. The purpose of this research project was to investigate how vegetation can be measured and quantified by human raters and how machine vision can automate the same process. Data were acquired at railway trackbeds and embankments during field measurement experiments. All field data (such as images) in this thesis work was acquired on operational, lightly trafficked railway tracks, mostly trafficked by goods trains. Data were also generated by letting (human) raters conduct visual estimates of plant cover and/or count the number of plants, either on-site or in-house by making visual estimates of the images acquired from the field experiments. Later, the degree of reliability of(human) raters’ visual estimates were investigated and compared against machine vision algorithms. The overall results of the investigations involving human raters showed inconsistency in their estimates, and are therefore unreliable. As a result of the exploration of machine vision, computational methods and algorithms enabling automatic detection and characterisation of vegetation along railways were developed. The results achieved in the current work have shown that the use of image data for detecting vegetation is indeed possible and that such results could form the base for decisions regarding vegetation control. The performance of the machine vision algorithm which quantifies the vegetation cover was able to process 98% of the im-age data. Investigations of classifying plants from images were conducted in in order to recognise the specie. The classification rate accuracy was 95%.Objective measurements such as the ones proposed in thesis offers easy access to the measurements to all the involved parties and makes the subcontracting process easier i.e., both the subcontractors and the national railway administration are given the same reference framework concerning vegetation before signing a contract, which can then be crosschecked post maintenance.A very important issue which comes with an increasing ability to recognise species is the maintenance of biological diversity. Biological diversity along the trackbeds and embankments can be mapped, and maintained, through better and robust monitoring procedures. Continuously monitoring the state of vegetation along railways is highly recommended in order to identify a need for maintenance actions, and in addition to keep track of biodiversity. The computational methods or algorithms developed form the foundation of an automatic inspection system capable of objectively supporting manual inspections, or replacing manual inspections.
Resumo:
A system for weed management on railway embankments that is both adapted to the environment and efficient in terms of resources requires knowledge and understanding about the growing conditions of vegetation so that methods to control its growth can be adapted accordingly. Automated records could complement present-day manual inspections and over time come to replace these. One challenge is to devise a method that will result in a reasonable breakdown of gathered information that can be managed rationally by affected parties and, at the same time, serve as a basis for decisions with sufficient precision. The project examined two automated methods that may be useful for the Swedish Transport Administration in the future: 1) A machine vision method, which makes use of camera sensors as a way of sensing the environment in the visible and near infrared spectrum; and 2) An N-Sensor method, which transmits light within an area that is reflected by the chlorophyll in the plants. The amount of chlorophyll provides a value that can be correlated with the biomass. The choice of technique depends on how the information is to be used. If the purpose is to form a general picture of the growth of vegetation on railway embankments as a way to plan for maintenance measures, then the N-Sensor technique may be the right choice. If the plan is to form a general picture as well as monitor and survey current and exact vegetation status on the surface over time as a way to fight specific vegetation with the correct means, then the machine vision method is the better of the two. Both techniques involve registering data using GPS positioning. In the future, it will be possible to store this information in databases that are directly accessible to stakeholders online during or in conjunction with measures to deal with the vegetation. The two techniques were compared with manual (visual) estimations as to the levels of vegetation growth. The observers (raters) visual estimation of weed coverage (%) differed statistically from person to person. In terms of estimating the frequency (number) of woody plants (trees and bushes) in the test areas, the observers were generally in agreement. The same person is often consistent in his or her estimation: it is the comparison with the estimations of others that can lead to misleading results. The system for using the information about vegetation growth requires development. The threshold for the amount of weeds that can be tolerated in different track types is an important component in such a system. The classification system must be capable of dealing with the demands placed on it so as to ensure the quality of the track and other pre-conditions such as traffic levels, conditions pertaining to track location, and the characteristics of the vegetation. The project recommends that the Swedish Transport Administration: Discusses how threshold values for the growth of vegetation on railway embankments can be determined Carries out registration of the growth of vegetation over longer and a larger number of railway sections using one or more of the methods studied in the project Introduces a system that effectively matches the information about vegetation to its position Includes information about the growth of vegetation in the records that are currently maintained of the track’s technical quality, and link the data material to other maintenance-related databases Establishes a number of representative surfaces in which weed inventories (by measuring) are regularly conducted, as a means of developing an overview of the long-term development that can serve as a basis for more precise prognoses in terms of vegetation growth Ensures that necessary opportunities for education are put in place
Resumo:
Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.
Resumo:
Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.