880 resultados para Data modelling


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The exchange of design models in the design and construction industry is evolving away from 2-dimensional computer-aided design (CAD) and paper towards semantically-rich 3-dimensional digital models. This approach, known as Building Information Modelling (BIM), is anticipated to become the primary means of information exchange between the various parties involved in construction projects. From a technical perspective, the domain represents an interesting study in model-based interoperability, since the models are large and complex, and the industry is one in which collaboration is a vital part of business. In this paper, we present our experiences with issues of model-based interoperability in exchanging building information models between various tools, and in implementing tools which consume BIM models, particularly using the industry standard IFC data modelling format. We report on the successes and challenges in these endeavours, as the industry endeavours to move further towards fully digitised information exchange.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by continuing education as usual (Katehi, Pearson, & Feder, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualisation. These technologies have led to significant changes in the forms of mathematical and scientific thinking that are required beyond the classroom. Modelling, in its various forms, can develop and broaden children’s mathematical and scientific thinking beyond the standard curriculum. This paper first considers future competencies in the mathematical sciences within an increasingly complex world. Next, consideration is given to interdisciplinary problem solving and models and modelling. Examples of complex, interdisciplinary modelling activities across grades are presented, with data modelling in 1st grade, model-eliciting in 4th grade, and engineering-based modelling in 7th-9th grades.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study of data modelling with elementary students involves the analysis of a developmental process beginning with children’s investigations of meaningful contexts: visualising, structuring, and representing data and displaying data in simple graphs (English, 2012; Lehrer & Schauble, 2005; Makar, Bakker, & Ben-Zvi, 2011). A 3-year longitudinal study investigated young children’s data modelling, integrating mathematical and scientific investigations. One aspect of this study involved a researcher-led teaching experiment with 21 mathematically able Grade 1 students. The study aimed to describe explicit developmental features of students’ representations of continuous data...

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many nations are highlighting the need for a renaissance in the mathematical sciences as essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; 2010; The National Academies, 2009). Indeed, the first recommendation of The National Academies’ Rising Above the Storm (2007) was to vastly improve K–12 science and mathematics education. The subsequent report, Rising Above the Gathering Storm Two Years Later (2009), highlighted again the need to target mathematics and science from the earliest years of schooling: “It takes years or decades to build the capability to have a society that depends on science and technology . . . You need to generate the scientists and engineers, starting in elementary and middle school” (p. 9). Such pleas reflect the rapidly changing nature of problem solving and reasoning needed in today’s world, beyond the classroom. As The National Academies (2009) reported, “Today the problems are more complex than they were in the 1950s, and more global. They’ll require a new educated workforce, one that is more open, collaborative, and cross-disciplinary” (p. 19). The implications for the problem solving experiences we implement in schools are far-reaching. In this chapter, I consider problem solving and modelling in the primary school, beginning with the need to rethink the experiences we provide in the early years. I argue for a greater awareness of the learning potential of young children and the need to provide stimulating learning environments. I then focus on data modelling as a powerful means of advancing children’s statistical reasoning abilities, which they increasingly need as they navigate their data-drenched world.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Only very few constructed facilities today have a complete record of as-built information. Despite the growing use of Building Information Modelling and the improvement in as-built records, several more years will be required before guidelines that require as-built data modelling will be implemented for the majority of constructed facilities, and this will still not address the stock of existing buildings. A technical solution for scanning buildings and compiling Building Information Models is needed. However, this is a multidisciplinary problem, requiring expertise in scanning, computer vision and videogrammetry, machine learning, and parametric object modelling. This paper outlines the technical approach proposed by a consortium of researchers that has gathered to tackle the ambitious goal of automating as-built modelling as far as possible. The top level framework of the proposed solution is presented, and each process, input and output is explained, along with the steps needed to validate them. Preliminary experiments on the earlier stages (i.e. processes) of the framework proposed are conducted and results are shown; the work toward implementation of the remainder is ongoing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The importance of patterns in constructing complex systems has long been recognised in other disciplines. In software engineering, for example, well-crafted object-oriented architectures contain several design patterns. Focusing on mechanisms of constructing software during system development can yield an architecture that is simpler, clearer and more understandable than if design patterns were ignored or not properly applied. In this paper, we propose a model that uses object-oriented design patterns to develop a core bitemporal conceptual model. We define three core design patterns that form a core bitemporal conceptual model of a typical bitemporal object. Our framework is known as the Bitemporal Object, State and Event Modelling Approach (BOSEMA) and the resulting core model is known as a Bitemporal Object, State and Event (BOSE) model. Using this approach, we demonstrate that we can enrich data modelling by using well known design patterns which can help designers to build complex models of bitemporal databases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A unified approach is proposed for sparse kernel data modelling that includes regression and classification as well as probability density function estimation. The orthogonal-least-squares forward selection method based on the leave-one-out test criteria is presented within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic sparse kernel data modelling approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A basic principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: the underlying data generating mechanism exhibits known symmetric property and the underlying process obeys a set of given boundary value constraints. The class of orthogonal least squares regression algorithms can readily be applied to construct parsimonious grey-box RBF models with enhanced generalisation capability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper,the Prony's method is applied to the time-domain waveform data modelling in the presence of noise.The following three problems encountered in this work are studied:(1)determination of the order of waveform;(2)de-termination of numbers of multiple roots;(3)determination of the residues.The methods of solving these problems are given and simulated on the computer.Finally,an output pulse of model PG-10N signal generator and the distorted waveform obtained by transmitting the pulse above mentioned through a piece of coaxial cable are modelled,and satisfactory results are obtained.So the effectiveness of Prony's method in waveform data modelling in the presence of noise is confirmed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fundamental principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: (i) the underlying data generating mechanism exhibits known symmetric property, and (ii) the underlying process obeys a set of given boundary value constraints. The class of efficient orthogonal least squares regression algorithms can readily be applied without any modification to construct parsimonious grey-box RBF models with enhanced generalisation capability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Simulation modelling has been used for many years in the manufacturing sector but has now become a mainstream tool in business situations. This is partly because of the popularity of business process re-engineering (BPR) and other process based improvement methods that use simulation to help analyse changes in process design. This textbook includes case studies in both manufacturing and service situations to demonstrate the usefulness of the approach. A further reason for the increasing popularity of the technique is the development of business orientated and user-friendly Windows-based software. This text provides a guide to the use of ARENA, SIMUL8 and WITNESS simulation software systems that are widely used in industry and available to students. Overall this text provides a practical guide to building and implementing the results from a simulation model. All the steps in a typical simulation study are covered including data collection, input data modelling and experimentation.