980 resultados para Data errors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Los eventos transitorios únicos analógicos (ASET, Analog Single Event Transient) se producen debido a la interacción de un ión pesado o un protón de alta energía con un dispositivo sensible de un circuito analógico. La interacción del ión con un transistor bipolar o de efecto de campo MOS induce pares electrón-hueco que provocan picos que pueden propagarse a la salida del componente analógico provocando transitorios que pueden inducir fallas en el nivel sistema. Los problemas más graves debido a este tipo de fenómeno se dan en el medioambiente espacial, muy rico en iones pesados. Casos típicos los constituyen las computadoras de a bordo de satélites y otros artefactos espaciales. Sin embargo, y debido a la continua contracción de dimensiones de los transistores (que trae aparejado un aumento de sensibilidad), este fenómeno ha comenzado a observarse a nivel del mar, provocado fundamentalmente por el impacto de neutrones atmosféricos. Estos efectos pueden provocar severos problemas a los sistemas informáticos con interfaces analógicas desde las que obtienen datos para el procesamiento y se han convertido en uno de los problemas más graves a los que tienen que hacer frente los diseñadores de sistemas de alta escala de integración. Casos típicos son los Sistemas en Chip que incluyen módulos de procesamiento de altas prestaciones como las interfaces analógicas.El proyecto persigue como objetivo general estudiar la susceptibilidad de sistemas informáticos a ASETs en sus secciones analógicas, proponiendo estrategias para la mitigación de los errores.Como objetivos específicos se pretende: -Proponer nuevos modelos de ASETs basados en simulaciones en el nivel dispositivo y resueltas por el método de elementos finitos.-Utilizar los modelos para identificar las secciones más propensas a producir errores y consecuentemente para ser candidatos a la aplicación de técnicas de endurecimiento a radiaciones.-Utilizar estos modelos para estudiar la naturaleza de los errores producidos en sistemas de procesamiento de datos.-Proponer soluciones novedosas para la mitigación de estos efectos en los mismos circuitos analógicos evitando su propagación a las secciones digitales.-Proponer soluciones para la mitigación de los efectos en el nivel sistema.Para llevar a cabo el proyecto se plantea un procedimiento ascendente para las investigaciones a realizar, comenzando por descripciones en el nivel físico para posteriormente aumentar el nivel de abstracción en el que se encuentra modelado el circuito. Se propone el modelado físico de los dispositivos MOS y su resolución mediante el Método de Elementos Finitos. La inyección de cargas en las zonas sensibles de los modelos permitirá determinar los perfiles de los pulsos de corriente que deben inyectarse en el nivel circuito para emular estos efectos. Estos procedimientos se realizarán para los distintos bloques constructivos de las interfaces analógicas, proponiendo estrategias de mitigación de errores en diferentes niveles.Los resultados esperados del presente proyecto incluyen hardware para detección de errores y tolerancia a este tipo de eventos que permitan aumentar la confiabilidad de sistemas de tratamiento de la información, así como también nuevos datos referentes a efectos de la radiación en semiconductores, nuevos modelos de fallas transitorias que permitan una simulación de estos eventos en el nivel circuito y la determinación de zonas sensibles de interfaces analógicas típicas que deben ser endurecidas para radiación.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using survey expectations data and Markov-switching models, this paper evaluates the characteristics and evolution of investors' forecast errors about the yen/dollar exchange rate. Since our model is derived from the uncovered interest rate parity (UIRP) condition and our data cover a period of low interest rates, this study is also related to the forward premium puzzle and the currency carry trade strategy. We obtain the following results. First, with the same forecast horizon, exchange rate forecasts are homogeneous among different industry types, but within the same industry, exchange rate forecasts differ if the forecast time horizon is different. In particular, investors tend to undervalue the future exchange rate for long term forecast horizons; however, in the short run they tend to overvalue the future exchange rate. Second, while forecast errors are found to be partly driven by interest rate spreads, evidence against the UIRP is provided regardless of the forecasting time horizon; the forward premium puzzle becomes more significant in shorter term forecasting errors. Consistent with this finding, our coefficients on interest rate spreads provide indirect evidence of the yen carry trade over only a short term forecast horizon. Furthermore, the carry trade seems to be active when there is a clear indication that the interest rate will be low in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the application of normal theory methods to the estimation and testing of a general type of multivariate regressionmodels with errors--in--variables, in the case where various data setsare merged into a single analysis and the observable variables deviatepossibly from normality. The various samples to be merged can differ on the set of observable variables available. We show that there is a convenient way to parameterize the model so that, despite the possiblenon--normality of the data, normal--theory methods yield correct inferencesfor the parameters of interest and for the goodness--of--fit test. Thetheory described encompasses both the functional and structural modelcases, and can be implemented using standard software for structuralequations models, such as LISREL, EQS, LISCOMP, among others. An illustration with Monte Carlo data is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article reports on a lossless data hiding scheme for digital images where the data hiding capacity is either determined by minimum acceptable subjective quality or by the demanded capacity. In the proposed method data is hidden within the image prediction errors, where the most well-known prediction algorithms such as the median edge detector (MED), gradient adjacent prediction (GAP) and Jiang prediction are tested for this purpose. In this method, first the histogram of the prediction errors of images are computed and then based on the required capacity or desired image quality, the prediction error values of frequencies larger than this capacity are shifted. The empty space created by such a shift is used for embedding the data. Experimental results show distinct superiority of the image prediction error histogram over the conventional image histogram itself, due to much narrower spectrum of the former over the latter. We have also devised an adaptive method for hiding data, where subjective quality is traded for data hiding capacity. Here the positive and negative error values are chosen such that the sum of their frequencies on the histogram is just above the given capacity or above a certain quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy to implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data assimilation provides techniques for combining observations and prior model forecasts to create initial conditions for numerical weather prediction (NWP). The relative weighting assigned to each observation in the analysis is determined by its associated error. Remote sensing data usually has correlated errors, but the correlations are typically ignored in NWP. Here, we describe three approaches to the treatment of observation error correlations. For an idealized data set, the information content under each simplified assumption is compared with that under correct correlation specification. Treating the errors as uncorrelated results in a significant loss of information. However, retention of an approximated correlation gives clear benefits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20cm in elevation, and 40cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data, and thus assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50ms apart, elevations have a local standard deviation in height of 3.5cm, enabling the local measurement of surface roughness of the order of 5cm. Points acquired seconds apart acquire an additional random error due to Differential Geographic Positioning System (DGPS) fluctuation. Measurements made up to an hour apart show an elevation drift of 7cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4cm. The RMS planimetric error in point location was derived as 37.4cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the UK, intertidal zone monitoring.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considerable progress has taken place in numerical weather prediction over the last decade. It has been possible to extend predictive skills in the extra-tropics of the Northern Hemisphere during the winter from less than five days to seven days. Similar improvements, albeit on a lower level, have taken place in the Southern Hemisphere. Another example of improvement in the forecasts is the prediction of intense synoptic phenomena such as cyclogenesis which on the whole is quite successful with the most advanced operational models (Bengtsson (1989), Gadd and Kruze (1988)). A careful examination shows that there are no single causes for the improvements in predictive skill, but instead they are due to several different factors encompassing the forecasting system as a whole (Bengtsson, 1985). In this paper we will focus our attention on the role of data-assimilation and the effect it may have on reducing the initial error and hence improving the forecast. The first part of the paper contains a theoretical discussion on error growth in simple data assimilation systems, following Leith (1983). In the second part we will apply the result on actual forecast data from ECMWF. The potential for further forecast improvements within the framework of the present observing system in the two hemispheres will be discussed.