973 resultados para Data centres


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The firm is faced with a decision concerning the nature of intra-organizational exchange relationships with internal human resources and the nature or inter-organizational exchange relationships with market firms. In both situations, the firm can develop an exchange that ranges from a discrete exchange to a relational exchange. Transaction Cost Economics (TCE) and the Resource Dependency View (RDV) represent alternative efficiency-based explanations fo the nature of the exchange relationship. The aim of the paper is to test these two theories in respect of air conditioning maintenance in retail centres. Multiple sources of information are genereated from case studies of Australian retail centres to test these theories in respoect of internalized operations management (concerning strategic aspects of air conditioning maintenance) and externalized planned routine air conditioning maintenance. The analysis of the data centres on pattern matching. It is concluded that the data supports TCE - on the basis of a development in TCE's contractual schema. Further research is suggested towards taking a pluralistic stance and developing a combined efficiency and power hypothesis - upon which Williamson has speculated. For practice, the conclusions also offer a timely cautionary note concerning the adoption of one approach in all exchange relationships.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications’ placement methods in data centres are not concerned with the placement of the component’s data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud provider’s servers. Experimental results demonstrate the feasibility and the scalability of the GA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss the key issues in the deployment of sparse sensor networks. The network monitors several environment parameters and is deployed in a semi-arid region for the benefit of small and marginal farmers. We begin by discussing the problems of an existing unreliable 1 sq km sparse network deployed in a village. The proposed solutions are implemented in a new cluster. The new cluster is a reliable 5 sq km network. Our contributions are two fold. Firstly, we describe a. novel methodology to deploy a sparse reliable data gathering sensor network and evaluate the ``safe distance'' or ``reliable'' distance between nodes using propagation models. Secondly, we address the problem of transporting data from rural aggregation servers to urban data centres. This paper tracks our steps in deploying a sensor network in a village,in India, trying to provide better diagnosis for better crop management. Keywords - Rural, Agriculture, CTRS, Sparse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud data centres are implemented as large-scale clusters with demanding requirements for service performance, availability and cost of operation. As a result of scale and complexity, data centres typically exhibit large numbers of system anomalies resulting from operator error, resource over/under provisioning, hardware or software failures and security issus anomalies are inherently difficult to identify and resolve promptly via human inspection. Therefore, it is vital in a cloud system to have automatic system monitoring that detects potential anomalies and identifies their source. In this paper we present a lightweight anomaly detection tool for Cloud data centres which combines extended log analysis and rigorous correlation of system metrics, implemented by an efficient correlation algorithm which does not require training or complex infrastructure set up. The LADT algorithm is based on the premise that there is a strong correlation between node level and VM level metrics in a cloud system. This correlation will drop significantly in the event of any performance anomaly at the node-level and a continuous drop in the correlation can indicate the presence of a true anomaly in the node. The log analysis of LADT assists in determining whether the correlation drop could be caused by naturally occurring cloud management activity such as VM migration, creation, suspension, termination or resizing. In this way, any potential anomaly alerts are reasoned about to prevent false positives that could be caused by the cloud operator’s activity. We demonstrate LADT with log analysis in a Cloud environment to show how the log analysis is combined with the correlation of systems metrics to achieve accurate anomaly detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A collection of resources including a website about Green ICT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The software underpinning today’s IT systems needs to adapt dynamically and predictably to rapid changes in system workload, environment and objectives. We describe a software framework that achieves such adaptiveness for IT systems whose components can be modelled as Markov chains. The framework comprises (i) an autonomic architecture that uses Markov-chain quantitative analysis to dynamically adjust the parameters of an IT system in line with its state, environment and objectives; and (ii) a method for developing instances of this architecture for real-world systems. Two case studies are presented that use the framework successfully for the dynamic power management of disk drives, and for the adaptive management of cluster availability within data centres, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on insights from the implementation of commercial products for data-centre resource management, we identified key challenges in the development of cost-effective autonomic solutions, and best practices for overcoming these challenges. In a related paper, we proposed a generic autonomic framework that complies with these best practices, and suggested ways in which existing technologies could be used to realise this framework. In this paper, we describe the actual implementation of our autonomic framework as a service-oriented architecture, and we show how the universal policy engine at its core can be configured to manage the allocation of server capacity to services of different priorities. This case study demonstrates the effectiveness of our generic approach to autonomic solution development in an area of great interest for commercial data centres, research laboratories and application service providers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): J.2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968-2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Power systems require a reliable supply and good power quality. The impact of power supply interruptions is well acknowledged and well quantified. However, a system may perform reliably without any interruptions but may have poor power quality. Although poor power quality has cost implications for all actors in the electrical power systems, only some users are aware of its impact. Power system operators are much attuned to the impact of low power quality on their equipment and have the appropriate monitoring systems in place. However, over recent years certain industries have come increasingly vulnerable to negative cost implications of poor power quality arising from changes in their load characteristics and load sensitivities, and therefore increasingly implement power quality monitoring and mitigation solutions. This paper reviews several historical studies which investigate the cost implications of poor power quality on industry. These surveys are largely focused on outages, whilst the impact of poor power quality such as harmonics, short interruptions, voltage dips and swells, and transients is less well studied and understood. This paper examines the difficulties in quantifying the costs of poor power quality, and uses the chi-squared method to determine the consequences for industry of power quality phenomenon using a case study of over 40 manufacturing and data centres in Ireland.