994 resultados para Dam safety
Resumo:
Face à Directiva 2007/60/CE relativa à avaliação e gestão do risco de inundações, ao Decreto-Lei nº 344/2007 que aprova o Regulamento de Segurança de Barragens, ao aumento de áreas urbanizadas e às projecções dos modelos de clima para o fim do século, que apontam para o aumento da frequência e da intensidade da ocorrência de inundações causadas por eventos de precipitação intensa de curta duração, é crucial a definição de regras de operação nos reservatórios com controlo de cheias. O Reservatório de Magos pertence à bacia hidrográfica do rio Tejo, está situado no Concelho de Salvaterra de Magos e tem como usos principais a rega e o controlo de cheias. Este trabalho tem como objecto de estudo a definição das regras de operação (restrição no caudal descarregado) do Reservatório de Magos para controlo de cheias no troço a jusante. São aplicados o modelo hidrológico HEC-HMS 3.1.0, o modelo hidráulico HEC-RAS 3.1.3 e o modelo de simulação de reservatórios HEC-ResSim 3.O para o cálculo do hidrograma de cheia, da zona inundável e para simulação do balanço de água no reservatório, respectivamente. Como resultado são apresentadas as regras de operação (caudal máximo e mínimo a descarregar) do Reservatório de Magos para controlo da zona inundável a jusante, no caso de um evento de cheia. /ABSTRACT: Based on the Directive 2007/60/CE related to the Assessment and Management of Flood Risks, on the Decree-Law n. o 344/2007 which approves the Regulation for Dam Safety, the increased urban areas and to the projections of climate models by the end of the century which is pointing to an increased frequency and intensity of occurrence of floods caused by intense rainfall events of short duration, establishing rules of operation for flood control in reservoirs becomes crucial. The Magos Reservoir belongs to the river Tagus basin, located in the county of Salvaterra de Magos and has as its main uses the irrigation and flood control. This study aims to establish the rules of operation (flow discharged restriction) of the Reservoir of Magos for flood control in the downstream reach. The methodology used in the present work includes the application of the Hydrological model HEC-HMS 3.1.0, the Hydraulic model HEC-RAS 3.1.3 and a reservoir simulation model HEC-ResSim 3.0 to calculate the hydrograph of peak discharge, floodplain zone and simulate reservoir operations, respectively. As a result, the rules of operation (maximum flow and minimum discharge) of Magos Reservoir for flood control in a downstream reach in case of flood event are presented.
Resumo:
The drawdown of reservoirs can significantly affect the stability of upstream slopes of earth dams. This is due to the removal of the balancing hydraulic forces acting on the dams and the undrained condition within the upstream slope soils. In such scenarios, the stability of the slopes can be influenced by a range of factors including drawdown rates, slope inclination and soil properties. This paper investigates the effects of drawdown rate, saturated hydraulic conductivity and unsaturated shear strength of dam materials on the stability of the upstream slope of an earth dam. In this study, the analysis of pore-water pressure changes within the upstream slope during reservoir drawdown was coupled with the slope stability analysis using the general limit equilibrium method. The results of the analysis suggested that a decrease in the reservoir water level caused the stability of the upstream slope to decrease. The dam embankment constructed with highly permeable soil was found to be more stable during drawdown scenarios, compared to others. Further, lower drawdown rates resulted in a higher safety factor for the upstream slope. Also, the safety factor of the slope calculated using saturated shear strength properties of the dam materials was slightly higher than that calculated using unsaturated shear strength properties. In general, for all the scenarios analysed, the lowest safety factor was found to be at the reservoir water level of about 2/3 of drawdown regime.
Resumo:
Patient safety has become a significant and pressing policy issue. Around the world, governments, the health care sector and the public are increasingly cognizant of the need to improve the safety of care delivered by their health systems. Pressure for change has been created by highly publicized incidents in a number of countries involving unsafe acts that were significant both in scale and consequence and a number of empirical studies that revealed the high rates of unsafe acts and their consequences. The costs of unsafe health care – both personal and fiscal – to individuals, their families and their communities and to the state are massive. In this research project we explored one particular avenue for change – that is, the use of legal instruments by governments to improve patient safety. We did this through a comparative review of the use of legal instruments or frameworks in other countries (specifically Australia, Denmark, New Zealand, the United Kingdom, and the United States) as well as two non-health care related sectors in Canada (transportation and occupational health and safety). We began this research by reviewing the legal instruments and undertaking extensive literature reviews. Further information was gathered through in-person interviews with policy-makers and academics in the countries studied, and from policy-makers and academics expert in the health, occupational health and safety, and transportation sectors in Canada. Once descriptions of the various countries and sectors were drafted, we held small-group meetings with local experts on particular aspects of patient safety. We then hosted a national consultation meeting. We subsequently drafted this final report and the appendices, which fully describe the results of the background research. Finally, we prepared a summary version of the report as well as posters and papers to be published and delivered at conferences and meetings with relevant groups.
Resumo:
Proper analysis for safe design of tailings earthen dam is necessary under static loading and more so under earthquake conditions to reduce damages of important geotechnical structure. This paper presents both static and seismic analyses of a typical section of tailings earthen dam constructed by downstream method and located at a site in eastern part India to store non-radioactive nuclear waste material. The entire analysis is performed using geotechnical softwares FLAC(3D) and TALREN 4. Results are obtained for various possible conditions of the reservoir to investigate the stability under both static and seismic loading condition using 1989 Loma Prieta earthquake acceleration-time history. FLAC(3D) analyses indicate the critical maximum displacement at crest of the proposed tailings dam section is 5.5 cm under the static loading but it increases to about 16.24 cm under seismic loading. The slope stability analyses provide the minimum value of factor of safety for seismic loading as 1.5 as compared to 2.31 for static loading. Amplification of base seismic acceleration is also observed. The liquefaction potential analysis in FLAC(3D) indicates considerable loss of shear strength in the tailings portion of the proposed earthen dam section with significantly high values of pore pressure ratio.
Resumo:
In this paper the seismic slope stability analyses are performed for a typical section of 44 m high water retention type tailings earthen dam located in the eastern part of India, using both the conventional pseudo-static and recent pseudo-dynamic methods. The tailings earthen dam is analyzed for different upstream conditions of reservoir like filled up with compacted and non-compacted dumped waste materials with different water levels of the pond tailings portion. Phreatic surface is generated using seepage analysis in geotechnical software SEEP/W and that same is used in the pseudo-static and pseudo-dynamic analyses to make the approach more realistic. The minimum values of factor of safety using pseudo-static and pseudo-dynamic method are obtained as 1.18 and 1.09 respectively for the chosen seismic zone in India. These values of factor of safety show clearly the demerits of conventional pseudo-static analysis compared to recent pseudo-dynamic analysis, where in addition to the seismic accelerations, duration, frequency of earthquake, body waves traveling during earthquake and amplification effects are considered.
Resumo:
The number of dams, which need rehabilitation, is growing, not only in countries that have a long tradition in dam building and operation but,also in those regions where the infrastructure is still in full development. Though rehabilitation projects generally deal with problems that are common in dam engineering practice there are some peculiarities which are a characteristic of such projects and which must be duly taken into account to avoid unsuccess and/or unnecessary costs. Regular safety inspection is essential to forestall the development of structural, hydrological and operational unsafety. if need of major repair or overall rehabilitation of a dam becomes apparent design oft he rehabilitation project must be preceded by a comprehensive checkup of the structure and appurtenant works, as well as by an evaluation of its hydrological safety inclusive of all relevant environmental aspects. The availability of complete records on the clam's structural behaviour and on meteorological and hydrological data, as well as the knowledge of the materials properties of the existing structure are important for the successful design of a rehabilitation project. To this end the installation of monitoring devices in the existing structure may be necessary to generate representative data. While the criteria to be used in structural design should correspond to current standards, the definition of hydrological design criteria depends on considerations that vary widely from region to region or even from one country to another. Some basic hydrological safety requirements, however, are recommended for general acceptance. Dam rehabilitation projects demand very careful and detailed construction planning because of their dependence on river flow conditions, operational restrictions and, often, on procedures or limitations imposed to avoid harm to the environment. of utmost importance is the timely availability of the financial funds required to complete the project, in order to avoid delays which could result in structural or operational unsafety. Since every dam sooner or later will have to undergo major repair or updating of safety, rehabilitation may evolve to a speciality of dam engineering.
Resumo:
Se describe el problema del hinchamiento del hormigón en las presas de doble curvatura. Several chemical reactions are able to produce swelling of concrete for decades after its initial curing, a problem that affects a considerable number of concrete dams around the world. The object of the work reported is to simulate the underlying mechanisms with sufficient accuracy to reproduce the past history and to predict the future evolution reliably. Having studied the available formulations, that considered to be more promising was adopted and introduced via user routines in a commercial finite element code. It is a non isotropic swelling model,compatible with the cracking and other non-linearities displayed by the concrete. The paper concentrates on the work conducted for a double-curvature arch dam. The model parameters were determined on the basis of some parts of the dam’s monitored histories, reliability was then verified using other parts and, finally, predictions were made about the future evolution of the dam and its safety margin.
Resumo:
La gestión de estériles de una explotación minera es un punto clave en el desarrollo económico de una actividad extractiva, y en especial, del entorno natural y social en el que se emplaza dicho proyecto. La minería de metales preciosos lleva asociada la construcción de balsas de residuos muy peligrosos, fruto de su proceso extractivo, como por ejemplo la cianuración en el caso del oro. Para un correcto funcionamiento de dichos emplazamientos es necesario escoger correctamente el método constructivo a partir de estudios de reconocimiento previos, como estudios de estabilidad geotécnica, contexto geológico de la zona, sismicidad, hidrología, etc. Así mismo, han de llevarse a cabo unas exhaustivas medidas de control y vigilancia para asegurar las condiciones de seguridad exigidas. La ruptura de la balsa de decantación de Aurul S.A. en Baia Mare (Rumania) el 30 de Enero del año 2000 ha sido escogido como caso de estudio de estabilidad de diques. ABSTRACT Tailing's management of a mining exploitation is a key point in the economical development of the extractive activity and, especially, of the natural and social environment of the site. Precious metals mining has high hazardous embankment construction associated, product of its extractive process, i.e. gold cyanidation. A correct operation of those sites makes necessary to choose a suitable construction method, based on previous studies as geotechnical stability studies, geological context of the area, seismicity, hydrology, etc. At the same time, exhaustive control and monitoring must be carried out in order to assure the required safety conditions. Aurul's decantation pond failure in Baia Mare (Romania), on 30th January 2000, has been chosen as a stability analysis case-study.
Resumo:
This paper outlines a process for fleet safety training based on research and management development programmes undertaken at the University of Huddersfield in the UK (www.hud.ac.uk/sas/trans/transnews.htm) and CARRS-Q in Australia (www.carrsq.qut.edu.au/staff/Murray.jsp) over the past 10 years.