924 resultados para DYNAMIC COMPOSITION CHANGES
Resumo:
The papers by Winser et al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.
Resumo:
Nutrient enrichment and drought conditions are major threats to lowland rivers causing ecosystem degradation and composition changes in plant communities. The controls on primary producer composition in chalk rivers are investigated using a new model and existing data from the River Frome (UK) to explore abiotic and biotic interactions. The growth and interaction of four primary producer functional groups (suspended algae, macrophytes, epiphytes, sediment biofilm) were successfully linked with flow, nutrients (N, P), light and water temperature such that the modelled biomass dynamics of the four groups matched that of the observed. Simulated growth of suspended algae was limited mainly by the residence time of the river rather than in-stream phosphorus concentrations. The simulated growth of the fixed vegetation (macrophytes, epiphytes, sediment biofilm) was overwhelmingly controlled by incoming solar radiation and light attenuation in the water column. Nutrients and grazing have little control when compared to the other physical controls in the simulations. A number of environmental threshold values were identified in the model simulations for the different producer types. The simulation results highlighted the importance of the pelagic–benthic interactions within the River Frome and indicated that process interaction defined the behaviour of the primary producers, rather than a single, dominant driver. The model simulations pose interesting questions to be considered in the next iteration of field- and laboratory based studies.
Resumo:
Dynamic composition of services provides the ability to build complex distributed applications at run time by combining existing services, thus coping with a large variety of complex requirements that cannot be met by individual services alone. However, with the increasing amount of available services that differ in granularity (amount of functionality provided) and qualities, selecting the best combination of services becomes very complex. In response, this paper addresses the challenges of service selection, and makes a twofold contribution. First, a rich representation of compositional planning knowledge is provided, allowing the expression of multiple decompositions of tasks at arbitrary levels of granularity. Second, two distinct search space reduction techniques are introduced, the application of which, prior to performing service selection, results in significant improvement in selection performance in terms of execution time, which is demonstrated via experimental results.
Resumo:
Ubiquitous computing systems operate in environments where the available resources significantly change during the system operation, thus requiring adaptive and context aware mechanisms to sense changes in the environment and adapt to new execution contexts. Motivated by this requirement, a framework for developing and executing adaptive context aware applications is proposed. The PACCA framework employs aspect-oriented techniques to modularize the adaptive behavior and to keep apart the application logic from this behavior. PACCA uses abstract aspect concept to provide flexibility by addition of new adaptive concerns that extend the abstract aspect. Furthermore, PACCA has a default aspect model that considers habitual adaptive concerns in ubiquitous applications. It exploits the synergy between aspect-orientation and dynamic composition to achieve context-aware adaptation, guided by predefined policies and aim to allow software modules on demand load making possible better use of mobile devices and yours limited resources. A Development Process for the ubiquitous applications conception is also proposed and presents a set of activities that guide adaptive context-aware developer. Finally, a quantitative study evaluates the approach based on aspects and dynamic composition for the construction of ubiquitous applications based in metrics
Resumo:
Saliva plays important roles in facilitation of a bloodmeal, lubrication of mouthparts, and parasite transmission for some vector insects. Salivary composition changes during the lifetime of an insect, and differences in the salivary profile may influence its functions. In this report, the amount and profile of salivary gland protein of the American visceral leishmaniasis vector Lutzomyia longipalpis (Lutz & Neiva, 1912) were analyzed at different times of insect development and diet. Protein content from unfed female sand flies increased significantly with age, and a significant difference was observed in sugar-fed females during the first 10 d of adult life. Salivary protein content sharply decreased 1 d after blood feeding, with gradual increase in concentration the following days. SDS-polyacrylamide gel electrophoresis analysis revealed that most polypeptides present in the saliva of sugar-fed also were present in the saliva of blood-fed females. Understanding changes in sand fly's saliva contents at distinct days after emergence and the influence of a bloodmeal in this aspect may reveal the role played by saliva during leishmaniasis transmission. © 2008 Entomological Society of America.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Die im Süden der Türkei gelegen, antiken Städte Aspendos und Patara, waren in der Römerzeit zwei bedeutende Handelszentren mit hoher Bevölkerungsdichte. Aquädukte versorgten beide Städte mit carbonathaltigem Wasser, wobei sich Kalksinter (Calciumcarbonat) in der Kanalrinne ablagerte. Dabei lagern sich im Wechsel eine hellere und dunklere Kalksinterlage ab, die als Sinterpaar bezeichnet wird. Um die Entstehung dieser Sinterpaare besser zu verstehen, und die beteiligten Prozesse mit saisonalen Veränderungen der Umwelt zu korrelieren, werden in der vorliegenden Arbeit laminierten Sinterablagerungen mit geochemischen und petrographischen Methoden untersucht.rnEntlang der Kanalrinne beider Aquädukte wurden an mehreren Stellen Proben entnommen. Es wurde untersucht in wieweit sich die Sinterstruktur aufgrund von Änderungen in der Neigung des Wasserkanals oder des Kanaltyps ändert. Um die Kristallform und die kristallografische Orientierung der Kristalle innerhalb der verschiedenen Sinterpaare zu untersuchen, wurden die entnommenen laminierten Kalksinterablagerungen mit Hilfe optischer Mikroskopie und EBSD (Electron Backscatter Diffraction) analysiert. Der Electron Probe Micro-Analyzer (EPMA) wurde verwendet, um saisonale Schwankungen der Hauptelementverteilung und den Anteil der stabilen Isotope im Wasser zu bestimmen. Die LA-ICP-MS (Laser Ablation-induktiv gekoppeltem Plasma-Massenspektrometrie) Spurenelementanalyse wurde durchgeführt, um kleinste Schwankungen der Spurenelemente zu finden. Basierend auf diesen Analysen wurde festgestellt, dass laminierten Kalksinterablagerungen laterale Änderungen in der Aquäduktstruktur und -neigung, jahreszeitliche Änderungen der Wasserchemie, der Temperatur sowie der Entgasungsrate während eines Jahres widerspiegeln. Die Kalksinterablagerungen zeigen eine deutliche Laminierung in Form von feinkörnig-porösen und grobkörnig-dichten Schichten, die trockene und nasse Jahreszeiten anzeigen. Feinkörnige Schichten zeigen eine hohe Epifluoreszenz aufgrund reichhaltiger organischer Inhalte, die vermutlich eine Folge der bakteriellen Aktivität während der warmen und trockenen Jahreszeit sind. Stabile Sauerstoff und Kohlenstoff-Isotop-Kurven entsprechen auch den jahreszeitlichen Schwankungen der verschiedenen Schichtenpaare. Vor allem δ 18O spiegelt jährliche Veränderungen in der Temperatur und jahreszeitliche Veränderungen des Abflusses wieder. Das wichtigste Ergebnis ist, dass die Periodizität von δ 18O durch Erwärmen des Wassers im Wasserkanal und nicht durch die Verdunstung oder der Brunnenwasser-Charakteristik verursacht wird. Die Periodizität von δ 13C ist komplexer Natur, vor allem zeigen δ 18O und δ 13C eine Antikorrelation entlang der Lamellenpaare. Dies wird wohl vor allem durch Entgasungsprozesse im Aquädukt verursacht. Die Ergebnisse der Spurenelemente sind meist inkonsistent und zeigen keine signifikanten Veränderungen in den verschiedenen Lamellenpaaren. Die Isotope Mg, Sr und Ba zeigen hingegen bei einigen Proben eine positive Korrelation und erreichen Höchstwerte innerhalb feinkörnig-poröser Schichten. Auch sind die Hauptelementwerte von Fe, K, Si und anderer detritischer Elemente innerhalb der feinkörnige-porösen Schichten maximal. Eine genaue Datierung der Kalksinterablagerungen ist wünschenswert, da der Zeitraum, in dem die Aquädukte aktiv waren, bereits archäologisch auf 200-300 Jahre festgelegt wurde. Paläomagnetische und 14C-Datierung geben keine brauchbare Ergebnisse. Die U/Th Isotopie wird durch eine hohe Anfangskonzentration von Th in den Proben behindert. Trotz dieser Schwierigkeiten war eine U/Th Datierung an einem Testbeispiel des Béziers Aquädukt erfolgreich. Mit Hilfe von analogen Untersuchungen an aktiven Wasserkanälen der heutigen Zeit, werden die Ablagerungsmechanismen und die geochemische Entwicklung der laminierten Sinterschichten besser verstanden. Ein weiteres laufendes Projekt dieser Doktorarbeit ist die Überwachung von Sinterabscheidungen und der saisonale Zusammensetzung des Wassers an einigen heute noch aktiven Aquädukten. Das Ziel ist die Untersuchung der jetzigen Calciumcarbonatabscheidungen in Aquäduktkanälen unter den heutigen Umgebungsbedingungen. Erste Ergebnisse zeigen, dass kleine regelmäßige jahreszeitliche Veränderungen in der Isotopenzusammensetzung des Wassers vorliegen, und dass die beobachtete Periodizität der stabilen Isotope aufgrund von Änderungen im eigentlichen Kanal entstanden ist. Die Untersuchung von Kalksinterablagerungen in römischen Aquädukten liefern vielversprechende Ergebnisse, für die Untersuchung des Paläöklimas, der Archaeoseismologie und anderer Umweltbedingungen in der Römerzeit. Diese Studie beschränkt sich auf zwei Aquädukte. Die Untersuchungen weiterer Aquädukte und einer Überwachung, der noch in Betrieb stehenden Aquädukte werden genauere Ergebnisse liefern.
Resumo:
Body composition changes with increasing age in men, in that lean body mass decreases whereas fat mass increases. Whether this altered body composition is related to decreasing physical activity or to the known age-associated decrease in growth hormone secretion is uncertain. To address this question, three groups of healthy men (n = 14 in each group), matched for weight, height and body mass index, were investigated using dual-energy X-ray absorptiometry, indirect calorimetry and estimate of daily growth hormone secretion [i.e. plasma insulin-like growth factor I (IGF-I-) levels]. Group 1 comprised young untrained subjects aged 31.0 +/- 2.1 years (mean +/- SEM) taking no regular physical exercise; group 2 consisted of old untrained men aged 68.6 +/- 1.2 years; and group 3 consisted of healthy old men aged 67.4 +/- 1.2 years undergoing regular physical training for more than 10 years with a training distance of at least 30 km per week. Subjects in group 3 had for the past three years taken part in the 'Grand Prix of Berne', a 16.5-km race run at a speed of 4.7 +/- 0.6 min km-1 (most recent race). Fat mass was more than 4 kg higher in old untrained men (P < 0.01, ANOVA) than in the other groups (young untrained men, 12.0 +/- 0.9 kg; old untrained men, 16.1 +/- 1.0 kg; old trained men, 11.0 +/- 0.8 kg), whereas body fat distribution (i.e. the ratio of upper to lower body fat mass) was similar between the three groups. The lean mass of old untrained men was more than 3.5 kg lower (P < 0.02, ANOVA) than in the other two groups (young untrained men, 56.4 +/- 1.0 kg; old untrained men, 52.4 +/- 1.0 kg; old trained men, 56.0 +/- 1.0 kg), mostly because of a loss of skeletal muscle mass in the arms and legs (young untrained men, 24.0 +/- 0.5 kg; old untrained men 20.8 +/- 0.5 kg; old trained men, 23.6 +/- 0.7 kg; P < 0.01, ANOVA). Resting metabolic rate per kilogram lean mass decreased with increasing age independently of physical activity (r = -0.42, P < 0.005). Fuel metabolism was determined by indirect calorimetry at rest. Protein oxidation was similar in the three groups. Old untrained men had higher (P < 0.001) carbohydrate oxidation (young untrained men, 13.2 +/- 1.0 kcal kg-1 lean mass; old untrained men, 15.2 +/- 1.3 kcal Kg-1; old trained men, 7.8 +/- 0.8 kcal kg-1), but lower (P < 0.05, ANOVA) fat oxidation (young untrained men, 10.1 +/- 1.2 kcal kg-1 lean mass; old untrained men, 6.5 +/- 1.0 kcal kg-1; old trained men, 13.7 +/- 1.0 kcal kg-1) than the other two groups. Mean plasma IGF-I level in old trained men was higher than in old untrained men (P < 0.05), but was still lower than that observed in young untrained men (P < 0.005) (young untrained men, 236 +/- 24 ng mL-1; old untrained men, 119 +/- 13 ng mL-1; old trained men, 166 +/- 14 ng mL-1). In summary, regular physical training in older men seems to prevent the changes in body composition and fuel metabolism normally associated with ageing. Whether regular physical training in formerly untrained old subjects would result in similar changes awaits further study.
Resumo:
In SW Ethiopia, the moist evergreen Afromontane forest has become extremely fragmented and most of the remnants are intensively managed for coffee cultivation (Coffea arabica), with considerable impacts on biodiversity and ecosystem functioning. Because epiphytic orchids are potential indicators for forest quality and a proxy for overall forest biodiversity, we assessed the effect of forest management and forest fragmentation on epiphytic orchid diversity. We selected managed forest sites from both large and small forest remnants and compared their epiphytic orchid diversity with the diversity of natural unfragmented forest. We surveyed 339 canopy trees using rope climbing techniques. Orchid richness decreased and community composition changed, from the natural unfragmented forest, over the large managed forest fragments to the small managed forest fragments. This indicates that both forest management and fragmentation contribute to the loss of epiphytic orchids. Both the removal of large canopy trees typical for coffee management, and the occurrence of edge effects accompanying forest fragmentation are likely responsible for species loss and community composition changes. Even though some endangered orchid species persist even in the smallest fragments, large managed forest fragments are better options for the conservation of epiphytic orchids than small managed forests. Our results ultimately show that even though shade coffee cultivation is considered as a close-to-nature practice and is promoted as biodiversity conservation friendly, it cannot compete with the epiphytic orchid conservation benefit generated by unmanaged moist evergreen Afromontane forests.
Resumo:
Relaxation of the upper age limits for solid organ transplantation coupled with improvements in post-transplant survival have resulted in greater numbers of elderly patients receiving immunosuppressant drugs such as tacrolimus. Tacrolimus is a potent agent with a narrow therapeutic window and large inter- and intraindividual pharmacokinetic variability. Numerous physiological changes occur with aging that could potentially affect the pharmacokinetics of tacrolimus and, hence, patient dosage requirements. Tacrolimus is primarily metabolised by cytochrome P450 (CYP) 3A enzymes in the gut wall and liver. It is also a substrate for P-glycoprotein, which counter-transports diffused tacrolimus out of intestinal cells and back into the gut lumen. Age-associated alterations in CYP3A and P-glycoprotein expression and/or activity, along with liver mass and body composition changes, would be expected to affect the pharmacokinetics of tacrolimus in the elderly. However, interindividual variation in these processes may mask any changes caused by aging. More investigation is needed into the impact aging has on CYP and P-glycoprotein activity and expression. No single-dose, intense blood-sampling study has specifically compared the pharmacokinetics of tacrolimus across different patient age groups. However, five population pharmacokinetic studies, one in kidney, one in bone marrow and three in liver transplant recipients, have investigated age as a co-variate. None found a significant influence for age on tacrolimus bioavailability, volume of distribution or clearance. The number of elderly patients included in each study, however, was not documented and may have been only small. It is likely that inter- and intraindividual pharmacokinetic variability associated with tacrolimus increase in elderly populations. In addition to pharmacokinetic differences, donor organ viability, multiple co-morbidity, polypharmacy and immunological changes need to be considered when using tacrolimus in the elderly. Aging is associated with decreased immunoresponsiveness, a slower body repair process and increased drug adverse effects. Elderly liver and kidney transplant recipients are more likely to develop new-onset diabetes mellitus than younger patients. Elderly transplant recipients exhibit higher mortality from infectious and cardiovascular causes than younger patients but may be less likely to develop acute rejection. Elderly kidney recipients have a higher potential for chronic allograft nephropathy, and a single rejection episode can be more devastating. There is a paucity of information on optimal tacrolimus dosage and target trough concentration in the elderly. The therapeutic window for tacrolimus concentrations may be narrower. Further integrated pharmacokinetic-pharmaco-dynamic studies of tacrolimus are required. It would appear reasonable, based on current knowledge, to commence tacrolimus at similar doses as those used in younger patients. Maintenance dose requirements over the longer term may be lower in the elderly, but the increased variability in kinetics and the variety of factors that impact on dosage suggest that patient care needs to be based around more frequent monitoring in this age group.
Resumo:
This study used supplementary feeding to test the hypothesis that fuel partitioning during the postweaning fast in grey seal pups is affected by size and composition of energy reserves at weaning, and by extra provisioning. Mass and body composition changes were measured during suckling and fasting to investigate the effect of natural differences in energy reserves at weaning on subsequent allocation of fat and protein to energy use. We fed seven pups for 5 days after weaning, to investigate the effect of increased fuel availability, and particularly protein, on fuel utilisation. After correcting for protein used during the moult, the proportional contribution of fat was 86–99% of total energy use. Pups with greater energy reserves, i.e. those that were heavier and fatter at weaning, had higher rates of fat and energy use. There was no significant relationship between adiposity at weaning and proportional contribution of fat to energy use, perhaps due to a limited sample size or range of body masses and adiposity. Supplemented individuals used energy, specifically fat, much faster and utilised proportionally less of their endogenous protein by departure than non-supplemented individuals. Fat metabolism contributed a similar percentage to daily energy use in both groups. These findings show that pups spare protein, even when energy use is dramatically increased. Pups that receive greater maternal provisioning and lay down more protein may have increased survival chances at sea. This study highlights the importance of protein reserves in first year survival of grey seal pups.
Resumo:
Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.
Resumo:
Purpose: Photoreceptor interactions reduce the temporal bandwidth of the visual system under mesopic illumination. The dynamics of these interactions are not clear. This study investigated cone-cone and rod-cone interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to vision via shared post-receptoral pathways. Methods: A four-primary photostimulator independently controlled photoreceptor activity in human observers. To determine the temporal dynamics of receptoral (L, S, R) and post-receptoral (LMS, LMSR, +L-M) pathways (5 Td, 7° eccentricity) in Experiment 1, ON-pathway sensitivity was assayed with an incremental probe (25ms) presented relative to onset of an incremental sawtooth conditioning pulse (1000ms). To define the post-receptoral pathways mediating the rod stimulus, Experiment 2 matched the color appearance of increased rod activation (30% contrast, 25-1000ms; constant cone excitation) with cone stimuli (variable L+M, L/L+M, S/L+M; constant rod excitation). Results: Cone-cone interactions with luminance stimuli (LMS, LMSR, L-cone) reduced Weber contrast sensitivity by 13% and the time course of adaptation was 23.7±1ms (μ±SE). With chromatic stimuli (+L-M, S), cone pathway sensitivity was also reduced and recovery was slower (+L-M 8%, 2.9±0.1ms; S 38%, 1.5±0.3ms). Threshold patterns at ON-conditioning pulse onset were monophasic for luminance and biphasic for chromatic stimuli. Rod-rod interactions increased sensitivity(19%) with a recovery time of 0.7±0.2ms. Compared to cone-cone interactions, rod-cone interactions with luminance stimuli reduced sensitivity to a lesser degree (5%) with faster recovery (42.9±0.7ms). Rod-cone interactions were absent with chromatic stimuli. Experiment 2 showed that rod activation generated luminance (L+M) signals at all durations, and chromatic signals (L/L+M, S/L+M) for durations >75ms. Conclusions: Temporal dynamics of cone-cone interactions are consistent with contrast sensitivity loss in the MC pathway for luminance stimuli and chromatically opponent responses in the PC and KC pathway with chromatic stimuli. Rod-cone interactions limit contrast sensitivity loss during dynamic illumination changes and increase the speed of mesopic light adaptation. The change in relative weighting of the temporal rod signal within the major post-receptoral pathways modifies the sensitivity and dynamics of photoreceptor interactions.
Resumo:
This thesis presents a novel approach to building large-scale agent-based models of networked physical systems using a compositional approach to provide extensibility and flexibility in building the models and simulations. A software framework (MODAM - MODular Agent-based Model) was implemented for this purpose, and validated through simulations. These simulations allow assessment of the impact of technological change on the electricity distribution network looking at the trajectories of electricity consumption at key locations over many years.
Resumo:
Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glycocode. Several tools are being developed for glycan profiling based on chromatography,m mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.