970 resultados para DSS, Supporto decisioni, Sistemi Intelligenti, Ricerca Operativa
Resumo:
Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.
Resumo:
This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.
Resumo:
This thesis deals with an investigation of combinatorial and robust optimisation models to solve railway problems. Railway applications represent a challenging area for operations research. In fact, most problems in this context can be modelled as combinatorial optimisation problems, in which the number of feasible solutions is finite. Yet, despite the astonishing success in the field of combinatorial optimisation, the current state of algorithmic research faces severe difficulties with highly-complex and data-intensive applications such as those dealing with optimisation issues in large-scale transportation networks. One of the main issues concerns imperfect information. The idea of Robust Optimisation, as a way to represent and handle mathematically systems with not precisely known data, dates back to 1970s. Unfortunately, none of those techniques proved to be successfully applicable in one of the most complex and largest in scale (transportation) settings: that of railway systems. Railway optimisation deals with planning and scheduling problems over several time horizons. Disturbances are inevitable and severely affect the planning process. Here we focus on two compelling aspects of planning: robust planning and online (real-time) planning.
Resumo:
In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.
Resumo:
This thesis gathers the work carried out by the author in the last three years of research and it concerns the study and implementation of algorithms to coordinate and control a swarm of mobile robots moving in unknown environments. In particular, the author's attention is focused on two different approaches in order to solve two different problems. The first algorithm considered in this work deals with the possibility of decomposing a main complex task in many simple subtasks by exploiting the decentralized implementation of the so called \emph{Null Space Behavioral} paradigm. This approach to the problem of merging different subtasks with assigned priority is slightly modified in order to handle critical situations that can be detected when robots are moving through an unknown environment. In fact, issues can occur when one or more robots got stuck in local minima: a smart strategy to avoid deadlock situations is provided by the author and the algorithm is validated by simulative analysis. The second problem deals with the use of concepts borrowed from \emph{graph theory} to control a group differential wheel robots by exploiting the Laplacian solution of the consensus problem. Constraints on the swarm communication topology have been introduced by the use of a range and bearing platform developed at the Distributed Intelligent Systems and Algorithms Laboratory (DISAL), EPFL (Lausanne, CH) where part of author's work has been carried out. The control algorithm is validated by demonstration and simulation analysis and, later, is performed by a team of four robots engaged in a formation mission. To conclude, the capabilities of the algorithm based on the local solution of the consensus problem for differential wheel robots are demonstrated with an application scenario, where nine robots are engaged in a hunting task.
Resumo:
This thesis deals with a novel control approach based on the extension of the well-known Internal Model Principle to the case of periodic switched linear exosystems. This extension, inspired by power electronics applications, aims to provide an effective design method to robustly achieve the asymptotic tracking of periodic references with an infinite number of harmonics. In the first part of the thesis the basic components of the novel control scheme are described and preliminary results on stabilization are provided. In the second part, advanced control methods for two applications coming from the world high energy physics are presented.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.
Resumo:
Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.