227 resultados para DPP
Resumo:
Dipeptidyl peptidase IV (DPP IV) is the primary inactivator of glucoregulatory incretin hormones. This has lead to development of DPP IV inhibitors as a new class of agents for the treatment of type 2 diabetes. Recent reports indicate that other antidiabetic drugs, such as metformin, may also have inhibitory effects on DPP IV activity. In this investigation we show that high concentrations of several antidiabetic drug classes, namely thiazolidinediones, sulphonylureas, meglitinides and morphilinoguanides can inhibit DPP IV The strongest inhibitor nateglinide, the insulin-releasing meglitinide was effective at low therapeutically relevant concentrations as low as 25 mu mol/l. Nateglinide also prevented the degradation of glucagon-like peptide-1 (GLP-1) by DPP IV in a time and concentration-dependent manner. In vitro nateglinide and GLP-1 effects on insulin release were additive. In vivo nateglinide improved the glucose-lowering and insulin-releasing activity of GLP-1 in obese-diabetic ob/ob mice. This was accompanied by significantly enhanced circulating concentrations of active GLP-1(7-36)amide and lower levels of DPP IV activity. Nateglinide similarly benefited the glucose and insulin responses to feeding in ob/ob mice and such actions were abolished by coadministration of exendin(9-39) and (Pro(3))GIP to block incretin hormone action. These data indicate that the use of nateglinide as a prandial insulin-releasing agent may partly rely on inhibition of GLP-1 degradation as well as beta-cell K-ATP channel inhibition. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ethnopharmacological relevance
The two plants investigated here (Fagonia cretica L. and Hedera nepalensis K. Koch) have been previously reported as natural folk medicines for the treatment of diabetes but until now no scientific investigation of potential anti-diabetic effects has been reported.
Materials and methods
In vitro inhibitory effect of the two tested plants and their five isolated compounds on the dipeptidyl peptidase 4 (DPP-4) was studied for the assessment of anti-diabetic activity.
Results
A crude extract of Fagonia cretica possessed good inhibitory activity (IC50value: 38.1 μg/ml) which was also present in its n-hexane (FCN), ethyl acetate (FCE) or aqueous (FCA) fractions. A crude extract of Hedera nepalensis (HNC) possessed even higher inhibitory activity (IC50value: 17.2 μg/ml) and this activity was largely retained when further fractionated in either ethyl acetate (HNE; IC50: 34.4 μg/ml) or n-hexane (HNN; 34.2 μg/ml). Bioactivity guided isolation led to the identification of four known compounds (isolated for the first time) from Fagonia cretica: quinovic acid (1), quinovic acid-3β-O-β-d-glycopyranoside (2), quinovic acid-3β-O-β-d-glucopyranosyl-(28→1)-β-d-glucopyranosyl ester (3), and stigmasterol (4) all of which inhibited DPP-4 activity (IC50: 30.7, 57.9, 23.5 and >100 μM, respectively). The fifth DPP-4 inhibitor, the triterpenoid lupeol (5) was identified in Hedera nepalensis (IC50: 31.6 μM).
Conclusion
The experimental study revealed that Fagonia cretica and Hedera nepalensis contain compounds with significant DPP-4 inhibitory activity which should be further investigated for their anti-diabetic potential.
Resumo:
Dipeptidyl peptidase 4 (DPP-4) enzymatically inactivates incretin hormones, and DPP-4 inhibitor drugs are clinically approved therapies for type 2 diabetes. The primary substrates of DPP-4 are produced in the intestinal lining and we therefore investigated whether lactobacilli colonizing the gut can inhibit this enzyme. Fifteen Lactobacillus strains (Lb 1-15) from human infant faecal samples were isolated, identified, extracted and screened for inhibitory activity against DPP-4. Activity was compared against Lactobacillus reference strains (Ref 1-7), a Gram positive control (Ctrl 1) and two Gram negative controls (Ctrl 2-3). A range of DPP-4 inhibitory activity was observed (10-32%; P<0.05-0.001). Strains of L. fabifermentans (25%), L. plantarum (12-24%) and L. fermentum (14%) had significant inhibitory activity. However, we also noted that E. coli (Ctrl 2) and S. Typhimurium (Ctrl 3) had the greatest inhibitory activity (30-32%). Contrastingly, some isolates (Lb 12-15) and reference cultures (Ref 1-4) instead of inhibiting DPP-4 actually enhanced it, perhaps indicating the presence of X-prolyl-dipeptidyl-amino-peptidase (PepX). This provides a future rationale for using probiotic bacteria or their components for management of type 2 diabetes via DPP-4 inhibition.
Resumo:
N,O-bis(diphenylphosphinyl)-2-(hydroxymethyl)aziridine ('DiDpp', 1) is efficiently prepared from 2-aminoethane-1,3-diol: this activated aziridine undergoes two sequential reactions with copper(I)-modified Grignard reagents, yielding alpha-branched N-Dpp amines in good yield. (C) 2003 Elsevier Science Ltd. All rights reserved.