976 resultados para DNA-damage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ataxia telangiectasia mutated (ATM) is a phosphatidyl-3-kinase-related protein kinase that functions as a central regulator of the DNA damage response in eukaryotic cells. In humans, mutations in ATM cause the devastating neurodegenerative disease ataxia telangiectasia. Previously, we characterized the homolog of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we found that AtmA is also required for polarized hyphal growth. Here, we extended these studies by investigating which components of the DNA damage response pathway are interacting with AtmA. The AtmA(ATM) loss of function caused synthetic lethality when combined with mutation in UvsB(ATR). Our results suggest that AtmA and UvsB are interacting and they are probably partially redundant in terms of DNA damage sensing and/or repairing and polar growth. We identified and inactivated A. nidulans chkA(CHK1) and chkB(CHK2) genes. These genes are also redundantly involved in A. nidulans DNA damage response. We constructed several combinations of double mutants for Delta atmA, Delta uvsB, Delta chkA, and Delta chkB. We observed a complex genetic relationship with these mutations during the DNA replication checkpoint and DNA damage response. Finally, we observed epistatic and synergistic interactions between AtmA, and bimE(APCI), ankA(WEE1) and the cdc2-related kinase npkA, at S-phase checkpoint and in response to DNA-damaging agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to chemotherapeutic drugs can be an obstacle to a successful treatment of cancer patients in part associated with individual response and differences in the DNA repair system. The Comet assay is an informative test to investigate DNA damage and repair in cells in response to a variety of DNA-damaging agents, including chemotherapeutic drugs. The aim of this study was to assess leukocytes damage after in-vitro cisplatin treatment and DNA repair action using the Comet assay in 20 patients with melanoma and 20 cancer-free individuals. Leukocytes` DNA damage before and after cisplatin treatment, in three different concentrations, was analyzed. The DNA repair capability was investigated after 1-5 h of in-vitro cells growing without cisplatin. The Comet score of the patients` basal DNA damage was higher than that observed in controls, but the difference was not statistically significant (P=0.85). Although both groups had similar Comet scores to all cisplatin concentrations tested and the DNA repair times, the basal DNA damage (P < 0.001) and cisplatin damages (P < 0.005) were statistically lower than the different repair times investigated. Considering the progressive increase in the Comet score due to repair time, the negative results here observed could be associated with the reduced cell culture incubation that should be better evaluated. Considering the mutagenic action of cisplatin on tumor cells and the importance of individual DNA repair mechanisms in the chemotherapeutic melanoma treatment, the peripheral leukocytes could be particularly useful as a tool for DNA repair response identified by the Comet assay. Melanoma Res 21:99-105 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the second most frequent type of cancer worldwide and is the most common malignant disease among women. Risk factors for breast cancer include early menarche, late menopause, hormonal therapies, exposure to environmental pollutants, smoking and alcohol use. However, increased or prolonged exposure to estrogen is the most important risk factor. It has been suggested that accumulation of DNA damage may contribute to breast carcinogenesis. Epidemiological studies suggest that cytogenetic biomarkers such as micronuclei in peripheral blood lymphocytes may predict cancer risk because they indicate genomic instability in target tissues. The objective of the present study was to evaluate the frequencies of micronuclei and the extent of DNA damage detected by comet assay in peripheral blood lymphocytes of untreated breast cancer patients and healthy women. The study was conducted using peripheral blood lymphocytes from 45 women diagnosed for Ductal ""in situ"" or invasive breast carcinoma and 85 healthy control women. Micronuclei and comet assays were performed to detect spontaneous DNA damage. The results showed that micronuclei frequencies and tail intensity, detected by comet assay, were significantly higher in the breast cancer group than in controls. The levels of DNA damage were similar in smokers and non-smokers, and aging did not influence the frequencies of micronuclei or tail intensity values observed in either group. In conclusion, the present work demonstrates higher levels of DNA damage in untreated breast cancer patients than in healthy women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - Chronic ethanol consumption induces lipid peroxidation by increasing free radicals or reducing antioxidants and may increase damage to hepatic DNA. Tannins are polyphenolic metabolites present in various plants and one of their effects is antioxidant activity that reduces lipoperoxidation, as is the case for vitamin E. This paper aims to assess the role of tannic acid and vitamin E in lipid peroxidation and in DNA damage in rats receiving ethanol. Design/methodology/approach - A total of 60 Wistar rats were divided into six groups: control + ethanol (0-24hs), tannic acid + ethanol (0-24 hs), and vitamin E + ethanol (0-24 hs). The animals were sacrificed immediately (0 hour) or 24 hours after a period of four weeks of ethanol administration and the following measurements were made: plasma vitamin E and liver glutathione, thiobarbituric acid resistant substances, and a-tocopherol. The comet test was also applied to hepatocytes. Findings - Ethanol administration led to an increase in DNA damage (148.67 +/- 15.45 versus 172.63 +/- 18.94) during a period of 24 hours which was not detected in the groups receiving tannic acid or vitamin E. Steatosis was lower in the groups receiving tannic acid. Originality/value - The paper highlights that antioxidant role of vitamin E and of tannic acid in biological systems submitted to oxidative stress should be reevaluated, especially regarding the protective role of tannic acid against hepatic steatosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Casearia sylvestris is used in Brazil as a popular medicine to treat ulcer, inflammation and tumour. Caseargrewiin F is a clerodane diterpene isolated from the ethanolic leaf extract of C.sylvestris. The aim of the study was to assess the capacity of the ethanolic extract of C.sylvestris leaves and caseargrewiin F to protect DNA and verify if both the compounds cause some DNA damage, using the micronucleus (MN) test and comet assay in mice. Balb-C mice were treated with the extract [3.13, 6.25, 12.5, 25, 50 and 75 mg/kg body weight (b.w.)] and caseargrewiin F (0.16, 0.32, 0.63, 1.3, 2.5 and 3.8 mg/kg b.w.) for 14 days. On day 15, DNA damage was induced by intra-peritoneal (i.p.) injection of cyclophosphamide (CP) (i.p.) at 50 mg/kg b.w. after the MN test and comet assay were performed. A protective effect of ethanolic extract was observed in MN test (6.25 and 12.5 mg/kg b.w.) and the comet assay (3.13 and 6.25, 12.5 and 25 mg/kg b.w.). Caseargrewiin F showed protective effect at 0.63, 1.3 and 2.5 mg/kg b.w. only in comet assay. We also tested the ability of compounds of C.sylvestris to induce MN and to increase the comet assay tail moment. The experimental design was similar to the DNA protection assay except that in test groups we omitted the CP challenge. We observed increased damage at 50 and 75 mg/kg b.w. of ethanolic extract of C.sylvestris and caseargrewiin F at 3.18 mg/kg b.w. in both the MN test and comet assay. We conclude that ethanolic extract of C. sylvestris and caseargrewiin F can protect cells against DNA damage induced by CP at low concentrations, but at high concentrations these compounds also induce DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals kept as pets may be considered sentinels for environmental factors to which humans could be exposed. Olfactory and respiratory epithelia are directly subjected to airborne factors, which could cause DNA lesions, and the alkaline comet assay is considered a reliable tool for the assessment of DNA damage. The objective of this work is to evaluate the extent of DNA damage by the comet assay of the olfactory and respiratory epithelia of dogs from different regions of the city of sao Paulo, Brazil. Thirty-three clinically healthy dogs, aged 5 years or more, were used in the study, with 7 from the North region of Sao Paulo, 7 from the South region, 3 dogs from the East region, and 16 dogs from the West city region. Three dogs younger than 6 months were used as controls. DNA damage was analyzed by the alkaline comet assay. We observed no difference in histopathological analysis of olfactory and respiratory epithelia between dogs from different regions of Sao Paulo. Dogs older than 5 years presented significantly higher comet length in both olfactory and respiratory epithelia, when compared with controls, indicating DNA damage. When separated by regions, olfactory and respiratory epithelia presented similar DNA damage in dogs from different regions of Sao Paulo, corroborating with similar levels of particulate matter index (PM10) in all regions of the city. In this study, we report for the first time that the comet assay can be used to quantify the extent of DNA damage in dog olfactory and respiratory epithelia, and that comet length (DNA damage) increases with age, probably due to environmental factors. Air pollution, as measured by PM 10, can be responsible for this DNA damage. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the effect of arsenic on DNA damage, Sprague-Dawley rats were dosed with sodium arsenite (10 mg/kg) with or without 800 mug of benzo(a)pyrene (BP) by intramammilary injection. The animals were sacrificed on day 1, 3, 5, 10 and 27 and the mammary gland tissues were collected for DNA adduct measurement using a P-32 post-labeling assay. Animals dosed with arsenic alone did not show any DNA adducts. DNA adduct levels in rats dosed with BP alone reached a maximum level by day 5, reducing to 13% of this level by day 27. Adduct levels in rats dosed with arsenic and BP also reached a maximum by day 5 but only 80% of the level observed in the BP group. However, 84% of this amount still remained by day 27. The First Nucleotide Change (FNC) technique was used for the screening of 115 samples of various tissues from mice that had been chronically exposed to sodium arsenate for over 2 years revealed that inorganic arsenic did not attack the two putative hotspots (codons 131 and 154) of the hOGG1 gene. These results support the hypothesis that arsenic exerts its biological activity through DNA repair inhibition. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute physical exercise is associated with increased oxygen consumption, which could result in an increased formation of reactive oxygen species (ROS). ROS can react with several organic structures, namely DNA, causing strand breaks and a variety of modified bases in DNA. Physical exercise training seems to decrease the incidence of oxidative stress-associated diseases, and is considered as a key component of a healthy lifestyle. This is a result of exercise-induced adaptation, which has been associated with the possible increase in antioxidant activity and in oxidative damage repair enzymes, leading to an improved physiological function and enhanced resistance to oxidative stress (Radak et al. 2008). Human 8-oxoguanine DNA glycosylase 1 (hOGG1) is involved in the base excision repair (BER) pathway and encodes an enzyme responsible for removing the most common product of oxidative damage in DNA, 8-hydroxyguanine (8-OH-G). The genetic polymorphism of hOGG1 at codon 326 results in a serine (Ser) to cysteine (Cys) amino acid substitution (Ser326Cys). It has been suggested that the carriers of at least one hOGG1Cys variant allele exhibit lower 8-OH-G excision activity than the wild-type (Wilson et al. 2011). The aim of this study was to investigate the possible influence of hOGG1 Ser326Cys polymorphism on DNA damage and repair activity in response to 16 weeks of combined physical exercise training, in thirty healthy Caucasian men. Comet assay was carried out using peripheral blood lymphocytes and enabled the evaluation of DNA damage, both strand breaks and FPG-sensitive sites, and DNA repair activity. Genotypes were determined by PCR-RFLP analysis. The subjects with Ser/Ser genotype were considered as wild-type group (n=20), Ser/Cys and Cys/Cys genotype were analyzed together as mutant group (n=10). Regarding differences between pre and post-training in the wild-type group, the results showed a significant decrease in DNA strand breaks (DNA SBs) (p=0.002) and also in FPG-sensitive sites (p=0.017). No significant differences were observed in weight (p=0.389) and in lipid peroxidation (MDA) (p=0.102). A significant increase in total antioxidant capacity (evaluated by ABTS) was observed (p=0.010). Regarding mutant group, the results showed a significant decrease in DNA SBs (p=0.008) and in weight (p=0.028). No significant differences were observed in FPG-sensitive sites (p=0.916), in ABTS (p=0.074) and in MDA (p=0.086). No significant changes in DNA repair activity were observed in both genotype groups. This preliminary study suggests the possibility of different responses in DNA damage to physical exercise training, considering the hOGG1 Ser326Cys polymorphism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrition science has evolved into a multidisciplinary field that applies molecular biology and integrates individual health with the epidemiologic investigation of population health. Nutritional genomics studies the functional interaction of food and its components, macro and micronutrients, with the genome at the molecular, cellular, and systemic level. Diet can influence cancer development in several ways, namely direct action of carcinogens in food that can damage DNA, diet components (macro or micronutrients) that can block or induce enzymes involved in activation or deactivation of carcinogenic substances. Moreover, inadequate intake of some molecules involved in DNA synthesis, repair or methylation can influence mutation rate or changes in gene expression. Several studies support the idea that diet can influence the risk of cancer; however information concerning the precise dietary factor that determines human cancer is an ongoing debate. A lot of epidemiological studies, involving food frequency questionnaires, have been developed providing important information concerning diet and cancer, however, diet is a complex composite of various nutrients (macro and micronutrients) and non-nutritive food constituents that makes the search for specific factors almost limitless.