996 resultados para DNA-NETWORK
Resumo:
The European Prospective Investigation into Cancer and nutrition (EPIC) is a long-term, multi-centric prospective study in Europe investigating the relationships between cancer and nutrition. This study has served as a basis for a number of Genome-Wide Association Studies (GWAS) and other types of genetic analyses. Over a period of 5 years, 52,256 EPIC DNA samples have been extracted using an automated DNA extraction platform. Here we have evaluated the pre-analytical factors affecting DNA yield, including anthropometric, epidemiological and technical factors such as center of subject recruitment, age, gender, body-mass index, disease case or control status, tobacco consumption, number of aliquots of buffy coat used for DNA extraction, extraction machine or procedure, DNA quantification method, degree of haemolysis and variations in the timing of sample processing. We show that the largest significant variations in DNA yield were observed with degree of haemolysis and with center of subject recruitment. Age, gender, body-mass index, cancer case or control status and tobacco consumption also significantly impacted DNA yield. Feedback from laboratories which have analyzed DNA with different SNP genotyping technologies demonstrate that the vast majority of samples (approximately 88%) performed adequately in different types of assays. To our knowledge this study is the largest to date to evaluate the sources of pre-analytical variations in DNA extracted from peripheral leucocytes. The results provide a strong evidence-based rationale for standardized recommendations on blood collection and processing protocols for large-scale genetic studies.
Resumo:
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA-34a (miR-34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR-34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild-type p53 expression. In normal HKCs, the pro-differentiation effects of increased p53 activity or UVB exposure are miR-34a-dependent, and increased miR-34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR-34a function, is a direct target of this miRNA in HKCs, and SIRT6 down-modulation is sufficient to reproduce the miR-34a pro-differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR-34a in normal keratinocytes and keratinocyte-derived tumours.
Resumo:
Background Folate deficiency leads to DNA damage and inadequate repair, caused by a decreased synthesis of thymidylate and purines. We analyzed the relationship between dietary folate intake and the risk of several cancers. Patients and methods The study is based on a network of case-control studies conducted in Italy and Switzerland in 1991-2009. The odds ratios (ORs) for dietary folate intake were estimated by multiple logistic regression models, adjusted for major identified confounding factors. Results For a few cancer sites, we found a significant inverse relation, with ORs for an increment of 100 μg/day of dietary folate of 0.65 for oropharyngeal (1467 cases), 0.58 for esophageal (505 cases), 0.83 for colorectal (2390 cases), 0.72 for pancreatic (326 cases), 0.67 for laryngeal (851 cases) and 0.87 for breast (3034 cases) cancers. The risk estimates were below unity, although not significantly, for cancers of the endometrium (OR = 0.87, 454 cases), ovary (OR = 0.86, 1031 cases), prostate (OR = 0.91, 1468 cases) and kidney (OR = 0.88, 767 cases), and was 1.00 for stomach cancer (230 cases). No material heterogeneity was found in strata of sex, age, smoking and alcohol drinking. Conclusions Our data support a real inverse association of dietary folate intake with the risk of several common cancers.
Resumo:
BACKGROUND: The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION: We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.
Resumo:
This paper discusses the analysis of cases in which the inclusion or exclusion of a particular suspect, as a possible contributor to a DNA mixture, depends on the value of a variable (the number of contributors) that cannot be determined with certainty. It offers alternative ways to deal with such cases, including sensitivity analysis and object-oriented Bayesian networks, that separate uncertainty about the inclusion of the suspect from uncertainty about other variables. The paper presents a case study in which the value of DNA evidence varies radically depending on the number of contributors to a DNA mixture: if there are two contributors, the suspect is excluded; if there are three or more, the suspect is included; but the number of contributors cannot be determined with certainty. It shows how an object-oriented Bayesian network can accommodate and integrate varying perspectives on the unknown variable and how it can reduce the potential for bias by directing attention to relevant considerations and distinguishing different sources of uncertainty. It also discusses the challenge of presenting such evidence to lay audiences.
Resumo:
Phosphorylation of transcription factors is a rapid and reversible process linking cell signaling and control of gene expression, therefore understanding how it controls the transcription factor functions is one of the challenges of functional genomics. We performed such analysis for the forkhead transcription factor FOXC2 mutated in human hereditary disease lymphedemadistichiasis and important for the development of venous and lymphatic valves and lymphatic collecting vessels. We found that FOXC2 is phosphorylated in a cell-cycle dependent manner on eight evolutionary conserved serine/threonine residues, seven of which are clustered within a 70 amino acid domain. Surprisingly, the mutation of phosphorylation sites or a complete deletion of the domain did not affect the transcriptional activity of FOXC2 in a synthetic reporter assay. However, overexpression of the wild type or phosphorylation-deficient mutant resulted in overlapping but distinct gene expression profiles suggesting that binding of FOXC2 to individual sites under physiological conditions is affected by phosphorylation. To gain a direct insight into the role of FOXC2 phosphorylation, we performed comparative genome-wide location analysis (ChIP-chip) of wild type and phosphorylation-deficient FOXC2 in primary lymphatic endothelial cells. The effect of loss of phosphorylation on FOXC2 binding to genomic sites ranged from no effect to nearly complete inhibition of binding, suggesting a mechanism for how FOXC2 transcriptional program can be differentially regulated depending on FOXC2 phosphorylation status. Based on these results, we propose an extension to the enhanceosome model, where a network of genomic context-dependent DNA-protein and protein-protein interactions not only distinguishes a functional site from a nonphysiological site, but also determines whether binding to the functional site can be regulated by phosphorylation. Moreover, our results indicate that FOXC2 may have different roles in quiescent versus proliferating lymphatic endothelial cells in vivo.
Resumo:
DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria.
Resumo:
BACKGROUND: Expression of heterologous genes in mammalian cells or organisms for therapeutic or experimental purposes often requires tight control of transgene expression. Specifically, the following criteria should be met: no background gene activity in the off-state, high gene expression in the on-state, regulated expression over an extended period, and multiple switching between on- and off-states. METHODS: Here, we describe a genetic switch system for controlled transgene transcription using chimeric repressor and activator proteins functioning in a novel regulatory network. In the off-state, the target transgene is actively silenced by a chimeric protein consisting of multimerized eukaryotic transcriptional repression domains fused to the DNA-binding tetracycline repressor. In the on-state, the inducer drug doxycycline affects both the derepression of the target gene promoter and activation by the GAL4-VP16 transactivator, which in turn is under the control of an autoregulatory feedback loop. RESULTS: The hallmark of this new system is the efficient transgene silencing in the off-state, as demonstrated by the tightly controlled expression of the highly cytotoxic diphtheria toxin A gene. Addition of the inducer drug allows robust activation of transgene expression. In stably transfected cells, this control is still observed after months of repeated cycling between the repressed and activated states of the target genes. CONCLUSIONS: This system permits tight long-term regulation when stably introduced into cell lines. The underlying principles of this network system should have general applications in biotechnology and gene therapy.
Resumo:
The genomic era has revealed that the large repertoire of observed animal phenotypes is dependent on changes in the expression patterns of a finite number of genes, which are mediated by a plethora of transcription factors (TFs) with distinct specificities. The dimerization of TFs can also increase the complexity of a genetic regulatory network manifold, by combining a small number of monomers into dimers with distinct functions. Therefore, studying the evolution of these dimerizing TFs is vital for understanding how complexity increased during animal evolution. We focus on the second largest family of dimerizing TFs, the basic-region leucine zipper (bZIP), and infer when it expanded and how bZIP DNA-binding and dimerization functions evolved during the major phases of animal evolution. Specifically, we classify the metazoan bZIPs into 19 families and confirm the ancient nature of at least 13 of these families, predating the split of the cnidaria. We observe fixation of a core dimerization network in the last common ancestor of protostomes-deuterostomes. This was followed by an expansion of the number of proteins in the network, but no major dimerization changes in interaction partners, during the emergence of vertebrates. In conclusion, the bZIPs are an excellent model with which to understand how DNA binding and protein interactions of TFs evolved during animal evolution.
Resumo:
The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4(Ddb2), which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.
Resumo:
A general understanding of interactions between DNA andoppositely charged compounds forms the basis for developing novelDNA-based materials, including gel particles. The association strength,which is altered by varying the chemical structure of the cationiccosolute, determines the spatial homogeneity of the gelation process,creating DNA reservoir devices and DNA matrix devices that can bedesigned to release either single- (ssDNA) or double-stranded(dsDNA) DNA. This paper reviews the preparation of DNA gelparticles using surfactants, proteins and polysaccharides. Particlemorphology, swelling/dissolution behaviour, degree of DNAentrapment and DNA release responses as a function of the nature ofthe cationic agent used are discussed. Current directions in thehaemocompatible and cytotoxic characterization of these DNA gelparticles have been also included.
Resumo:
Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these factors ultimately depends on the G1 cyclin Cln3. Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3. Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.
Resumo:
Les anàlisis realitzades en cent deu poblacions de truita comuna (Salmo trutta) que abarquen el seu rang natural de distribució indiquen que el patró filogenètic es relaciona amb les tres grans vessants on es troba distribuïda l'espècie: ponto-càspia, atlàntica i mediterrània. Aquesta diferenciació estaria associada a l'aïllament de les vessants durant el Quaternari. L'origen de l'espècie es relaciona amb la vessant ponto-càspia, d'acord amb els models biogeogràfics que postulen l'origen asiàtic de la ictiofauna europea. S'ha detectat també un segon nivell de divergència dins de cada vessant que dóna com a resultat l'existència de sis llinatges evolutius: Atlàntic i Duero a la vessant atlàntica, els llinatges Adriàtic, Mediterrani i Marmoratus als rius mediterranis, i el llinatge Danubi a la zona ponto-càspia. Les glaciacions del Pleistocè han modificat profundament el rang de distribució de la truita comuna, especialment a la vessant atlàntica, on s'han proposat quatre grans refugis glacials: a l'est de la capa de gel, a Europa central, a l'entorn del canal de la Mànega i a l'entorn del golf de Biscaia; tot i que només els tres primers haurien participat en la recolonització del nord d'Europa al final de l'última glaciació. El quart refugi, que inclou el sud de França i el Cantàbric hauria estat l'origen de l'expansió cap al sud durant el Pleistocè Superior d'un grup de poblacions distribuïdes actualment a la vessant atlàntica ibèrica, i també hauria servit de base per a l'expansió cap al nord d'altres grups de truita durant interglacials anteriors. A la vessant atlàntica de la peninsula Ibèrica, l'estructura poblacional es troba associada a la xarxa hidrogràfica i es determinen fins a cinc unitats poblacionals: les truites dels rius Cantàbrics, les del Miño, les del Duero, les del Tajo i les del Guadalquivir. Les poblacions del Guadalquivir pertanyerien a un grup d'influència mediterrània. Els marcadors d'al·lozims i de DNA mitocondrial es troben fortament correlacionats en aquesta vessant, on apunten cap als mateixos grups de poblacions. Per contra, els rius de la vessant mediterrània haurien estat colonitzats pels llinatges Adriàtic i Mediterrani i s'hauria produït una intensa intergradació secundària entre aquests llinatges durant els períodes glacials a partir de l'expansió de les poblacions retingudes a les capçaleres durant els interglacials. Els grups de hibridació, l'aïllament i la deriva en el període interglacial fa que els grups de poblacions identificats pels marcadors d'al·lozims i de DNA mitocondrial no coincideixin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)