934 resultados para DNA repair doublestrandbreak toxicology histone h2ax chromatin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have evaluated the molecular responses of human epithelial cells to low dose arsenic to ascertain how target cells may respond to physiologically relevant concentrations of arsenic. Data gathered in numerous experiments in different cell types all point to the same conclusion: low dose arsenic induces what appears to be a protective response against subsequent exposure to oxidative stress or DNA damage, whereas higher doses often provoke synergistic toxicity. In particular, exposure to low, sub-toxic doses of arsenite, As(III), causes coordinate up-regulation of multiple redox and redox-related genes including thioredoxin (Trx) and glutathione reductase (GR). Glutathione peroxidase (GPx) is down-regulated in fibroblasts, but up-regulated in keratinocytes, as is glutathione S-transferase (GST). The maximum effect on these redox genes occurs after 24 h exposure to 5–10 mM As(III). This is 10-fold higher than the maximum As(III) concentrations required for induction of DNA repair genes, but within the dose region where DNA repair genes are co-ordinately down-regulated. These changes in gene regulation are brought about in part by changes in DNA binding activity of the transcription factors activating protein-1 (AP-1), nuclear factor kappa-B, and cAMP response element binding protein (CREB). Although sub-acute exposure to micromolar As(III) up-regulates transcription factor binding, chronic exposure to submicromolar As(III) causes persistent down-regulation of this response. Similar long-term exposure to micromolar concentrations of arsenate in drinking water results in a decrease in skin tumour formation in dimethylbenzanthracene (DMBA)/phorbol 12-tetradecanoate 13-acetate (TPA) treated mice. Altered response patterns after long exposure to As(III) may play a significant role in As(III) toxicology in ways that may not be predicted by experimental protocols using short-term exposures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines the biological functions and the regulation of expression of DNA ligase I by studying its expression under different conditions.^ The gene expression of DNA ligase I was induced two- to four-fold in S-phase lymphoblastoid cells but was decreased to 15% of control after administration of a DNA damaging agent, 4-nitroquinoline-1-oxide. When cells were induced into differentiation, the expression level of DNA ligase I was decreased to less than 15% of that of the control cells. When the gene of DNA ligase I was examined for tissue specific expression in adult rats, high levels of DNA ligase I mRNA were observed in testis (8-fold), intermediate levels in ovary and brain (4-fold), and low levels were found in intestine, spleen, and liver (1- to 2-fold).^ In confluent cells of normal skin fibroblasts, UV irradiation induced the gene expression of DNA ligase I at 24 and 48 h. The induction of DNA ligase I gene expression requires active p53 protein. Introducing a vector containing the wild type p53 protein in the cells caused an induction of the DNA ligase I protein 24 h after the treatment.^ Our results indicate that, in addition to the regulation by phosphorylation/dephosphorylation, cellular DNA ligase I activity can be regulated at the gene transcription level, and the p53 tumor suppresser is one of the transcription factors for the DNA ligase I gene. Also, our results suggest that DNA ligase I is involved in DNA repair as well as in DNA replication.^ Also, as an early attempt to clone the human homolog of the yeast CDC9 gene which has been shown to be involved in DNA replication, DNA repair, and DNA recombination, we have identified a human gene with mRNA of 1.7 kb. This dissertation studies the gene regulation and the possible biological functions of this new human gene by examining its expression at different stages of the cell cycle, during cell differentiation, and in cellular response to DNA damage.^ The new gene that we recently identified from human cells is highly expressed in brain and reproductive organs (BRE). This BRE gene encodes an mRNA of 1.7-1.9 kb, with an open reading frame of 1,149 bp, and gives rise to a deduced polypeptide of 383 amino acid residues. No extensive homology was found between BRE and sequences from the EMBL-Gene Banks. BRE showed tissue-specific expression in adult rats. The steady state mRNA levels were high in testis (5-6 fold), ovary and brain (3-4 fold) compared to the spleen level, but low in intestine and liver (1-2 fold). The expression of this gene is responsive to DNA damage and/or retinoic acid (RA) treatment. Treatment of fibroblast cells with UV irradiation and 4-nitroquinoline-1-oxide caused more than 90% and 50% decreases in BRE mRNA, respectively. Similar decreases in BRE expression were observed after treatment of the brain glioma cell line U-251 and the promyelocytic cell line HL-60 with retinoic acid. (Abstract shortened by UMI). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BCR-ABL fusion gene is the molecular hallmark of Philadelphia-positive leukemias. Normal Bcr is a multifunctional protein, originally localized to the cytoplasm. It has serine kinase activity and has been implicated in cellular signal transduction. Recently, it has been reported that Bcr can interact with xeroderma pigmentosum group B (XPB/ERCC3)—a nuclear protein active in UV-induced DNA repair. Two major Bcr proteins (p160 Bcr and p130Bcr) have been characterized, and our preliminary results using metabolic labeling and immunoblotting demonstrated that, while both the p160 and p130 forms of Bcr localized to the cytoplasm, the p130 form (and to a lesser extent p160) could also be found in the nucleus. Furthermore, electron microscopy confirmed the presence of Bcr in the nucleus and demonstrated that this protein associates with metaphase chromatin as well as condensed interphase heterochromatin. Since serine kinases that associate with condensed DNA are often cell cycle regulatory, these observations suggested a novel role for nuclear Bcr in cell cycle regulation and/or DNA repair. However, cell cycle synchronization analysis did not demonstrate changes in levels of Bcr throughout the cell cycle. Therefore we hypothesized that BCR serves as a DNA repair gene, and its function is altered by formation of BCR-ABL. This hypothesis was investigated using cell lines stably transfected with the BCR-ABL gene, and their parental counterparts (MBA-1 vs. M07E and Bcr-AblT1 vs. 4A2+pZAP), and several DNA repair assays: the Comet assay, a radioinimunoassay for UV-induced cyclobutane pyrimidine dimers (CPDs), and clonogenic assays. Comet assays demonstrated that, after exposure to either ultraviolet (UV)-C (0.5 to 10.0 joules m −2) or to gamma radiation (200–1000 rads) there was greater efficiency of DNA repair in the BCR-ABL-transfected cells compared to their parental controls. Furthermore, after UVC-irradiation, there was less production of CPDs, and a more rapid disappearance of these adducts in BCR-ABL-bearing cells. UV survival, as reflected by clonogenic assays, was also greater in the BCR-ABL-transfected cells. Taken together, these results indicate that, in our systems, BCR-ABL confers resistance to UVC-induced damage in cells, and increases DNA repair efficiency in response to both UVC- and gamma-irradiation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To survive damage to the genome, cells must respond by activating both DNA repair and checkpoint responses. Using genetic screens in the fission yeast Schizosaccharomyces pombe, we recently isolated new genes required for DNA damage checkpoint control. We show here that one of these strains defines a new allele of the previously described rad18 gene, rad18-74. rad18 is an essential gene, even in the absence of extrinsic DNA damage. It encodes a conserved protein related to the structural maintenance of chromosomes proteins. Point mutations in rad18 lead to defective DNA repair pathways responding to both UV-induced lesions and, as we show here, double-stranded breaks. Furthermore, rad18p is required to maintain cell cycle arrest in the presence of DNA damage, and failure of this leads to highly aberrant mitoses. A gene encoding a BRCT-containing protein, brc1, was isolated as an allele-specific high-copy suppressor of rad18-74. brc1 is required for mitotic fidelity and for cellular viability in strains with rad18 mutations but is not essential for DNA damage responses. Mutations in rad18 and brc1 are synthetically lethal with a topoisomerase II mutant (top2-191), indicating that these proteins play a role in chromatin organization. These studies show a role for chromatin organization in the maintenance or activation of responses to DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of congenital malformations including heart, skeletal and most frequently neural tube defects. Although the mechanisms contributing to its teratogenesis are not well understood, VPA was previously shown to increase homologous recombination (HR)-mediated DNA repair and decrease protein expression of the transcription factor NF-κB/p65. The studies in this thesis utilized in vivo and in vitro models to evaluate the expression of HR mediators, investigate the implications of decreased p65 including DNA binding and transcriptional activation, and the expression and histone acetyltransferase activity of Cbp/p300 with an aim to provide mechanistic insight into VPA-mediated alterations. The first study demonstrated that following maternal administration of VPA, mouse embryonic mRNA expression of HR mediators Rad51, Brca1 and Brca2 exhibited temporal and tissue-specific alterations. Protein expression of Rad51 was similarly altered and preceded increased cleavage of caspase-3 and PARP; indicative of apoptosis. The second study confirms previous findings of decreased total cellular p65 protein using P19 cells, but is the first to demonstrate that nuclear p65 protein is unchanged. NF-κB DNA binding was decreased following VPA exposure and maybe mediated by decreased p50 protein, which dimerizes with p65 prior to DNA binding. Transcriptional activity of NF-κB was also increased with VPA exposure which was not due to increased p65 phosphorylation at Ser276. Furthermore, the transcriptional activation capacity was unaffected by VPA exposure as combined exposure to VPA and TNFα additively increased NF-κB activity. The third study demonstrated that VPA exposure in P19 cells decreased Cbp/p300 total cellular and nuclear protein attributed primarily to ubiquitin proteasome-mediated degradation. Histone acetyltransferase (HAT) activity of p300 was decreased proportionately to nuclear protein following VPA exposure. Inhibition of Cbp/p300 HAT activity decreased p65 total cellular protein, increased caspase-3 cleavage and ROS similar to VPA exposures. Furthermore, pre-treatment with the antioxidant enzyme catalase attenuated the increase in caspase-3 cleavage, but not p65 protein. Overall, this thesis demonstrates that VPA exposure impacts the expression and activity of the transcription factor NF-κB and transcriptional co-activators/HATs Cbp/p300, which has implications for downstream VPA targets including Rad51, Brca1 and Brca2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human topoisomerase I (htopoI) is an enzyme that up to now was believed to function mainly in the removal of torsional stress generated during transcription and replication. In 1998, it was found that htopoI might play another important role in the cellular response to DNA damage -- the so-called htopoI damage response. Since this initial discovery, many studies have suggested that the htopoI damage response is involved in DNA repair as well as in apoptosis. Here we discuss the earliest as well as the latest results in this field. Combining all of the published and as yet unpublished results, we suggest and discuss a model of how htopoI may function during DNA repair and apoptosis. Furthermore, numerous results show that the htopoI damage response is not a spontaneous event, but is strictly regulated by cellular signalling pathways. We discuss which pathways may be involved and how the htopoI damage response is activated. Although the htopoI damage response was discovered several years ago, research in this area is just beginning. The future will surely bring more clarity regarding the precise mechanism behind the involvement of htopoI in DNA repair and apoptosis, as well as its implications for a broader understanding of how the human organism ensures genomic stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cisplatin (cis-diamminedichloroplatinum (II)), is a platinum based chemotherapeutic employed in the clinic to treat patients with lung, ovarian, colorectal or head and neck cancers. Cisplatin acts to induce tumor cell death via multiple mechanisms. The best characterized mode of action is through irreversible DNA cross-links which activate DNA damage signals leading to cell death via the intrinsic mitochondrial apoptosis pathway. However, the primary issue with cisplatin is that while patients initially respond favorably, sustained cisplatin therapy often yields chemoresistance resulting in therapeutic failure. In this chapter, we review the DNA damage and repair pathways that contribute to cisplatin resistance. We also examine the cellular implications of cisplatin resistance that may lead to selection of subpopulations of cells within a tumor. In better understanding the mechanisms conferring cisplatin resistance, novel targets may be identified to restore drug sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer-related mortality. According to WHO, 1.37 million deaths occur globally each year as a result of this disease. More than 70% of these cases are associated with prior tobacco consumption and/or cigarette smoking, suggesting a direct causal relationship. The development and progression of lung cancer and other malignancies involves the loss of genetic stability, resulting in acquisition of cumulative genetic changes; this affords the cell increased malignant potential. As such, an understanding of the mechanisms through which these events may occur will potentially allow for development of new anticancer therapies. This review will address the association between lung cancer and genetic instability, with a central focus on genetic mutations in the DNA damage repair pathways. In addition, we will discuss the potential clinical exploitation of these pathways, both in terms of biomarker staging, as well as through direct therapeutic targeting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MGMT is the primary vehicle for cellular removal of alkyl lesions from the O-6 position of guanine and the O-4 position of thymine. While key to the maintenance of genomic integrity, MGMT also removes damage induced by alkylating chemotherapies, inhibiting the efficacy of cancer treatment. Germline variants of human MGMT are well-characterized, but somatic variants found in tumors were, prior to this work, uncharacterized. We found that MGMT G132R, from a human esophageal tumor, and MGMT G156C, from a human colorectal cancer cell line, are unable to rescue methyltransferase-deficient Escherichia coli as well as wild type (WT) human MGMT after treatment with a methylating agent. Using pre-steady state kinetics, we biochemically characterized these variants as having a reduced rate constant. G132R binds DNA containing an O6-methylguanine lesion half as tightly as WT MGMT, while G156C has a 40-fold decrease in binding affinity for the same damaged DNA versus WT. Mammalian cells expressing either G132R or G156C are more sensitive to methylating agents than mammalian cells expressing WT MGMT. G132R is slightly resistant to O6-benzylguanine, an inhibitor of MGMT in clinical trials, while G156C is almost completely resistant to this inhibitor. The impared functionality of expressed variants G132R and G156C suggests that the presence of somatic variants of MGMT in a tumor could impact chemotherapeutic outcomes.