987 resultados para DNA METHYLTRANSFERASE INHIBITORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylation of the MGMT promoter is supposed to be a predictive and prognostic factor in glioblastoma. Whether MGMT promoter methylation correlates with tumor response to temozolomide in low-grade gliomas is less clear. Therefore, we analyzed MGMT promoter methylation by a quantitative methylation-specific PCR in 22 patients with histologically verified low-grade gliomas (WHO grade II) who were treated with temozolomide (TMZ) for tumor progression. Objective tumor response, toxicity, and LOH of microsatellite markers on chromosomes 1p and 19q were analyzed. Histological classification revealed ten oligodendrogliomas, seven oligoastrocytomas, and five astrocytomas. All patients were treated with TMZ 200 mg/m2 on days 1-5 in a 4 week cycle. The median progression-free survival was 32 months. Combined LOH 1p and 19q was found in 14 patients; one patient had LOH 1p alone and one patient LOH 19q alone. The LOH status could not be determined in two patients and was normal in the remaining four. LOH 1p and/or 19q correlated with longer time to progression but not with radiological response to TMZ. MGMT promoter methylation was detectable in 20 patients by conventional PCR and quantitative analysis revealed the methylation status was between 12 and 100%. The volumetric response to chemotherapy analyzed by MRI and time to progression correlated with the level of MGMT promoter methylation. Therefore, our retrospective case series suggests that quantitative methylation-specific PCR of the MGMT promoter predicts radiological response to chemotherapy with TMZ in WHO grade II gliomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous attempts to express functional DNA cytosine methyltransferase (EC 2.1.1.37) in cells transfected with the available Dnmt cDNAs have met with little or no success. We show that the published Dnmt sequence encodes an amino terminal-truncated protein that is tolerated only at very low levels when stably expressed in embryonic stem cells. Normal expression levels were, however, obtained with constructs containing a continuation of an ORF with a coding capacity of up to 171 amino acids upstream of the previously defined start site. The protein encoded by these constructs comigrated in SDS/PAGE with the endogenous enzyme and restored methylation activity in transfected cells. This was shown by functional rescue of Dnmt mutant embryonic stem cells that contain highly demethylated genomic DNA and fail to differentiate normally. When transfected with the minigene construct, the genomic DNA became remethylated and the cells regained the capacity to form teratomas that displayed a wide variety of differentiated cell types. Our results define an amino-terminal domain of the mammalian MTase that is crucial for stable expression and function in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3′ splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current evidence indicates that methylation of cytosine in mammalian DNA is restricted to both strands of the symmetrical sequence CpG, although there have been sporadic reports that sequences other than CpG may also be methylated. We have used a dual-labeling nearest neighbor technique and bisulphite genomic sequencing methods to investigate the nearest neighbors of 5-methylcytosine residues in mammalian DNA. We find that embryonic stem cells, but not somatic tissues, have significant cytosine-5 methylation at CpA and, to a lesser extent, at CpT. As the expression of the de novo methyltransferase Dnmt3a correlates well with the presence of non-CpG methylation, we asked whether Dnmt3a might be responsible for this modification. Analysis of genomic methylation in transgenic Drosophila expressing Dnmt3a reveals that Dnmt3a is predominantly a CpG methylase but also is able to induce methylation at CpA and at CpT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNMT2 is a human protein that displays strong sequence similarities to DNA (cytosine-5)-methyltransferases (m5C MTases) of both prokaryotes and eukaryotes. DNMT2 contains all 10 sequence motifs that are conserved among m5C MTases, including the consensus S-adenosyl-l-methionine-binding motifs and the active site ProCys dipeptide. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. The crystal structure of a deletion mutant of DNMT2 complexed with S-adenosyl-l-homocysteine (AdoHcy) has been determined at 1.8 Å resolution. The structure of the large domain that contains the sequence motifs involved in catalysis is remarkably similar to that of M.HhaI, a confirmed bacterial m5C MTase, and the smaller target recognition domains of DNMT2 and M.HhaI are also closely related in overall structure. The small domain of DNMT2 contains three short helices that are not present in M.HhaI. DNMT2 binds AdoHcy in the same conformation as confirmed m5C MTases and, while DNMT2 shares all sequence and structural features with m5C MTases, it has failed to demonstrate detectable transmethylase activity. We show here that homologs of DNMT2, which are present in some organisms that are not known to methylate their genomes, contain a specific target-recognizing sequence motif including an invariant CysPheThr tripeptide. DNMT2 binds DNA to form a denaturant-resistant complex in vitro. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epigenetic alterations in the genome of tumor cells have attracted considerable attention since the discovery of widespread alterations in DNA methylation of colorectal cancers over 10 years ago. However, the mechanism of these changes has remained obscure. el-Deiry and coworkers [el-Deiry, W. S., Nelkin, B. D., Celano, P., Yen, R. C., Falco, J. P., Hamilton, S. R. & Baylin, S. B. (1991) Proc. Natl. Acad. Sci. USA 88, 3470-3474], using a quantitative reverse transcription-PCR assay, reported 15-fold increased expression of DNA methyltransferase (MTase) in colon cancer, compared with matched normal colon mucosa, and a 200-fold increase in MTase mRNA levels compared with mucosa of unaffected patients. These authors suggested that increases in MTase mRNA levels play a direct pathogenetic role in colon carcinogenesis. To test this hypothesis, we developed a sensitive quantitative RNase protection assay of MTase, linear over three orders of magnitude. Using this assay on 12 colorectal carcinomas and matched normal mucosal specimens, we observed a 1.8- to 2.5-fold increase in MTase mRNA levels in colon carcinoma compared with levels in normal mucosa from the same patients. There was no significant difference between the normal mucosa of affected and unaffected patients. Furthermore, when the assay was normalized to histone H4 expression, a measure of S-phase-specific expression, the moderate increase in tumor MTase mRNA levels was no longer observed. These data are in contrast to the previously reported results, and they indicate that changes in MTase mRNA levels in colon cancer are nonspecific and compatible with other markers of cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to exogenous alkylating agents, particularly N-nitroso compounds, has been associated with increased incidence of primary human brain tumors, while intrinsic risk factors are currently unknown. The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a major defense against the carcinogenicity of N-nitroso compounds and other alkylators. We report here that in 55% (64/117) of cases, histologically normal brain tissue adjacent to primary human brain tumors lacked detectable MGMT activity [methyl excision repair-defective (Mer-) status]. The incidence of Mer- status in normal brain tissue from brain tumor patients was age-dependent, increasing from 21% in children 0.25-19 years of age to 75% in adults over 50. In contrast, Mer- status was found in 12% (5/43) of normal brain specimens from patients operated for conditions other than primary brain tumors and was not age-dependent. The 4.6-fold elevation in incidence of Mer- status in brain tumor patients is highly significant (chi2 = 24; p < or = 0.001). MGMT activity was independent of age in the lymphocytes of brain tumor patients and was present in lymphocytes from six of nine tumor patients whose normal brain specimen was Mer-. DNA polymerase beta, apurinic/apyrimidinic endonuclease, and lactate dehydrogenase activities were present in all specimens tested, including Mer- specimens from brain tumor patients. Our data are consistent with a model of carcinogenesis in human brain in which epigenetically regulated lack of MGMT is a predisposing factor and alkylation-related mutagenesis is a driving force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CcrM adenine DNA methyltransferase, which specifically modifies GANTC sequences, is necessary for viability in Caulobacter crescentus. To our knowledge, this is the first example of an essential prokaryotic DNA methyltransferase that is not part of a DNA restriction/modification system. Homologs of CcrM are widespread in the alpha subdivision of the Proteobacteria, suggesting that methylation at GANTC sites may have important functions in other members of this diverse group as well. Temporal control of DNA methylation state has an important role in Caulobacter development, and we show that this organism utilizes an unusual mechanism for control of remethylation of newly replicated DNA. CcrM is synthesized de novo late in the cell cycle, coincident with full methylation of the chromosome, and is then subjected to proteolysis prior to cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since cyclothialidine was discovered as the most active DNA gyrase inhibitor in 1994, enormous efforts have been devoted to make it into a commercial medicine by a number of pharmaceutical companies and research groups worldwide. However, no serious breakthrough has been made up to now. An essential problem involved with cyclothialidine is that though it demonstrated the potent inhibition of DNA gyrase, it showed little activity against bacteria. This probably is attributable to its inability to penetrate bacterial cell walls and membranes. We applied the TSAR programme to generate a QSAR equation to the gram-negative organisms. In that equation, LogP is profoundly indicated as the key factor influencing the cyclothialidine activity against bacteria. However, the synthesized new analogues have failed to prove that. In the structure based drug design stage, we designed a group of open chain cyclothialidine derivatives by applying the SPROUT programme and completed the syntheses. Improved activity is found in a few analogues and a 3D pharmacophore of the DNA gyrase B is proposed to lead to synthesis of the new derivatives for development of potent antibiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclothialidine, a natural product isolated from Streptomyces .filipinensis NR0484, has been proven to be a potent and selective inhibitor of the bacterial enzyme DNA gyrase. Gyrase inhibition results in cell death, the enzyme being the target of several currently used antibiotics. Cyclothialidine showed poor activity against whole bacterial cells, highlighting scope for improvement regarding cell membrane pemeability in order for the full potential of this new class of antibiotics to be realised, Structurally, cyclothialidine contains a 12-membered lactone ring which is partly integrated into a pentapeptide chain, with a substituted aromatic moiety bordering the lactone, Retrosynthetically it can be traced back to cis-3-hydroxyproline, 3,5-dihydroxy-2,6-dimethylbenzoic acid and four commercially available amino acids; two serine, one cysteine and one alanine. In this work, a model of cyclothialidine was synthesised in order to establish the methodology for more complex compounds. Analogues with hydroxy, dihydroxy and dihydroxymethyl substituted aromatic moieties were then prepared to ensure successful protection methods could be performed and the pharmacophore synthesised. The key aromatic moiety, 2,6-dimethyl-3,5-dihydroxybenzoic acid was produced via two successive Mannich reaction/reduction steps. Acid protection using 4-nitrobenzyl bromide and TBDMS hydroxyl protection followed by bromination of one methyl afforded the desired intermediate. Reaction with a serine/cysteine dipeptide, followed by deprotection and cyclisation under Mitsunobu conditions lead to the 12-membered lactone. An amine substituted aromatic analogue and also replacement of the cysteine sulphur by oxygen were attempted but without success. In an effort to improve cell permeability, a conjugate was synthesised between the pharmacophore and a cholesterol moiety. It was hoped the steroid fragment would serve to increase potency by escorting the molecule through the lipid environment of the cell membrane. The pharmacophore and conjugate were tested against a variety of bacterial strains but the conjugate failed to improve activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgments This work was funded by the University of Aberdeen CLSM grant to TJS. EWJL was funded by a Society for Reproduction and Fertility undergraduate scholarship. TJS conceived the project, designed experiments, analyzed data and wrote the manuscript. EWJL conducted experiments and analyzed the data. CC conducted the immunocytochemistry. ML conducted HEK293 cell culture assays. EMC and ASB provided technical assistance. The authors thank Gerald Lincoln for critical feedback on a previous version of this manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgments This work was funded by the University of Aberdeen CLSM grant to TJS. EWJL was funded by a Society for Reproduction and Fertility undergraduate scholarship. TJS conceived the project, designed experiments, analyzed data and wrote the manuscript. EWJL conducted experiments and analyzed the data. CC conducted the immunocytochemistry. ML conducted HEK293 cell culture assays. EMC and ASB provided technical assistance. The authors thank Gerald Lincoln for critical feedback on a previous version of this manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background IL-23 is a member of the IL-6 super-family and plays key roles in cancer. Very little is currently known about the role of IL-23 in non-small cell lung cancer (NSCLC). Methods RT-PCR and chromatin immunopreciptiation (ChIP) were used to examine the levels, epigenetic regulation and effects of various drugs (DNA methyltransferase inhibitors, Histone Deacetylase inhibitors and Gemcitabine) on IL-23 expression in NSCLC cells and macrophages. The effects of recombinant IL-23 protein on cellular proliferation were examined by MTT assay. Statistical analysis consisted of Student's t-test or one way analysis of variance (ANOVA) where groups in the experiment were three or more. Results In a cohort of primary non-small cell lung cancer (NSCLC) tumours, IL-23A expression was significantly elevated in patient tumour samples (p<0.05). IL-23A expression is epigenetically regulated through histone post-translational modifications and DNA CpG methylation. Gemcitabine, a chemotherapy drug indicated for first-line treatment of NSCLC also induced IL-23A expression. Recombinant IL-23 significantly increased cellular proliferation in NSCLC cell lines. Conclusions These results may therefore have important implications for treating NSCLC patients with either epigenetic targeted therapies or Gemcitabine. © 2012 Elsevier Ireland Ltd.