989 resultados para DNA (Cytosine-5-)-Methyltransferase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that the DNA demethylation complex isolated from chicken embryos has a G⋅T mismatch DNA glycosylase that also possesses 5-methylcytosine DNA glycosylase (5-MCDG) activity. Herein we show that human embryonic kidney cells stably transfected with 5-MCDG cDNA linked to a cytomegalovirus promoter overexpress 5-MCDG. A 15- to 20-fold overexpression of 5-MCDG results in the specific demethylation of a stably integrated ecdysone-retinoic acid responsive enhancer-promoter linked to a β-galactosidase reporter gene. Demethylation occurs in the absence of the ligand ponasterone A (an analogue of ecdysone). The state of methylation of the transgene was investigated by Southern blot analysis and by the bisulfite genomic sequencing reaction. Demethylation occurs downstream of the hormone response elements. No genome-wide demethylation was observed. The expression of an inactive mutant of 5-MCDG or the empty vector does not elicit any demethylation of the promoter-enhancer of the reporter gene. An increase in 5-MCDG activity does not influence the activity of DNA methyltransferase(s) when tested in vitro with a hemimethylated substrate. There is no change in the transgene copy number during selection of the clones with antibiotics. Immunoprecipitation combined with Western blot analysis showed that an antibody directed against 5-MCDG precipitates a complex containing the retinoid X receptor α. The association between retinoid receptor and 5-MCDG is not ligand dependent. These results suggest that a complex of the hormone receptor with 5-MCDG may target demethylation of the transgene in this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA methylation at promoter CpG islands (CGI) is an epigenetic modification associated with inappropriate gene silencing in multiple tumor types. In the absence of a human pituitary tumor cell line, small interfering RNA-mediated knockdown of the maintenance methyltransferase DNA methyltransferase (cytosine 5)-1 (Dnmt1) was used in the murine pituitary adenoma cell line AtT-20. Sustained knockdown induced reexpression of the fully methylated and normally imprinted gene neuronatin (Nnat) in a time-dependent manner. Combined bisulfite restriction analysis (COBRA) revealed that reexpression of Nnat was associated with partial CGI demethylation, which was also observed at the H19 differentially methylated region. Subsequent genome-wide microarray analysis identified 91 genes that were significantly differentially expressed in Dnmt1 knockdown cells (10% false discovery rate). The analysis showed that genes associated with the induction of apoptosis, signal transduction, and developmental processes were significantly overrepresented in this list (P < 0.05). Following validation by reverse transcription-PCR and detection of inappropriate CGI methylation by COBRA, four genes (ICAM1, NNAT, RUNX1, and S100A10) were analyzed in primary human pituitary tumors, each displaying significantly reduced mRNA levels relative to normal pituitary (P < 0.05). For two of these genes, NNAT and S100A10, decreased expression was associated with increased promoter CGI methylation. Induced expression of Nnat in stable transfected AtT-20 cells inhibited cell proliferation. To our knowledge, this is the first report of array-based "epigenetic unmasking" in combination with Dnmt1 knockdown and reveals the potential of this strategy toward identifying genes silenced by epigenetic mechanisms across species boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterochromatin Protein 1 (HP1) is an evolutionarily conserved protein required for formation of a higher-order chromatin structures and epigenetic gene silencing. The objective of the present work was to functionally characterise HP1-like proteins in Dictyostelium discoideum, and to investigate their function in heterochromatin formation and transcriptional gene silencing. The Dictyostelium genome encodes three HP1-like proteins (hcpA, hcpB, hcpC), from which only two, hcpA and hcpB, but not hcpC were found to be expressed during vegetative growth and under developmental conditions. Therefore, hcpC, albeit no obvious pseudogene, was excluded from this study. Both HcpA and HcpB show the characteristic conserved domain structure of HP1 proteins, consisting of an N-terminal chromo domain and a C-terminal chromo shadow domain, which are separated by a hinge. Both proteins show all biochemical activities characteristic for HP1 proteins, such as homo- and heterodimerisation in vitro and in vivo, and DNA binding activtity. HcpA furthermore seems to bind to K9-methylated histone H3 in vitro. The proteins thus appear to be structurally and functionally conserved in Dictyostelium. The proteins display largely identical subnuclear distribution in several minor foci and concentration in one major cluster at the nuclear periphery. The localisation of this cluster adjacent to the nucleus-associated centrosome and its mitotic behaviour strongly suggest that it represents centromeric heterochromatin. Furthermore, it is characterised by histone H3 lysine-9 dimethylation (H3K9me2), which is another hallmark of Dictyostelium heterochromatin. Therefore, one important aspect of the work was to characterise the so-far largely unknown structural organisation of centromeric heterochromatin. The Dictyostelium homologue of inner centromere protein INCENP (DdINCENP), co-localized with both HcpA and H3K9me2 during metaphase, providing further evidence that H3K9me2 and HcpA/B localisation represent centromeric heterochromatin. Chromatin immunoprecipitation (ChIP) showed that two types of high-copy number retrotransposons (DIRS-1 and skipper), which form large irregular arrays at the chromosome ends, which are thought to contain the Dictyostelium centromeres, are characterised by H3K9me2. Neither overexpression of full-length HcpA or HcpB, nor deletion of single Hcp isoforms resulted in changes in retrotransposon transcript levels. However, overexpression of a C-terminally truncated HcpA protein, assumed to display a dominant negative effect, lead to an increase in skipper retrotransposon transcript levels. Furthermore, overexpression of this protein lead to severe growth defects in axenic suspension culture and reduced cell viability. In order to elucidate the proteins functions in centromeric heterochromatin formation, gene knock-outs for both hcpA and hcpB were generated. Both genes could be successfully targeted and disrupted by homologous recombination. Surprisingly, the degree of functional redundancy of the two isoforms was, although not unexpected, very high. Both single knock-out mutants did not show any obvious phenotypes under standard laboratory conditions and only deletion of hcpA resulted in subtle growth phenotypes when grown at low temperature. All attempts to generate a double null mutant failed. However, both endogenous genes could be disrupted in cells in which a rescue construct that ectopically expressed one of the isoforms either with N-terminal 6xHis- or GFP-tag had been introduced. The data imply that the presence of at least one Hcp isoform is essential in Dictyostelium. The lethality of the hcpA/hcpB double mutant thus greatly hampered functional analysis of the two genes. However, the experiment provided genetic evidence that the GFP-HcpA fusion protein, because of its ability to compensate the loss of the endogenous HcpA protein, was a functional protein. The proteins displayed quantitative differences in dimerisation behaviour, which are conferred by the slightly different hinge and chromo shadow domains at the C-termini. Dimerisation preferences in increasing order were HcpA-HcpA << HcpA-HcpB << HcpB-HcpB. Overexpression of GFP-HcpA or a chimeric protein containing the HcpA C-terminus (GFP-HcpBNAC), but not overexpression of GFP-HcpB or GFP-HcpANBC, lead to increased frequencies of anaphase bridges in late mitotic cells, which are thought to be caused by telomere-telomere fusions. Chromatin targeting of the two proteins is achieved by at least two distinct mechanisms. The N-terminal chromo domain and hinge of the proteins are required for targeting to centromeric heterochromatin, while the C-terminal portion encoding the CSD is required for targeting to several other chromatin regions at the nuclear periphery that are characterised by H3K9me2. Targeting to centromeric heterochromatin likely involves direct binding to DNA. The Dictyostelium genome encodes for all subunits of the origin recognition complex (ORC), which is a possible upstream component of HP1 targeting to chromatin. Overexpression of GFP-tagged OrcB, the Dictyostelium Orc2 homologue, showed a distinct nuclear localisation that partially overlapped with the HcpA distribution. Furthermore, GFP-OrcB localized to the centrosome during the entire cell cycle, indicating an involvement in centrosome function. DnmA is the sole DNA methyltransferase in Dictyostelium required for all DNA(cytosine-)methylation. To test for its in vivo activity, two different cell lines were established that ectopically expressed DnmA-myc or DnmA-GFP. It was assumed that overexpression of these proteins might cause an increase in the 5-methyl-cytosine(5-mC)-levels in the genomic DNA due to genomic hypermethylation. Although DnmA-GFP showed preferential localisation in the nucleus, no changes in the 5-mC-levels in the genomic DNA could be detected by capillary electrophoresis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously have shown that DNA demethylation by chicken embryo 5-methylcytosine DNA glycosylase (5-MCDG) needs both RNA and proteins. One of these proteins is a RNA helicase. Further peptides were sequenced, and three of them are identical to the mammalian G/T mismatch DNA glycosylase. A 3,233-bp cDNA coding for the chicken homologue of human G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (408 aa) shows 80% identity with the human G/T mismatch DNA glycosylase, and both the C and N-terminal parts have about 50% identity. As for the highly purified chicken embryo DNA demethylation complex the recombinant protein expressed in Escherichia coli has both G/T mismatch and 5-MCDG activities. The recombinant protein has the same substrate specificity as the chicken embryo 5-MCDG where hemimethylated DNA is a better substrate than symmetrically methylated CpGs. The activity ratio of G/T mismatch and 5-MCDG is about 30:1 for the recombinant protein expressed in E. coli and 3:1 for the purified enzyme from chicken embryos. The incubation of a recombinant CpG-rich RNA isolated from the purified DNA demethylation complex with the recombinant enzyme strongly inhibits G/T mismatch glycosylase while slightly stimulating the activity of 5-MCDG. Deletion mutations indicate that G/T mismatch and 5-MCDG activities share the same areas of the N- and C-terminal parts of the protein. In reconstitution experiments RNA helicase in the presence of recombinant RNA and ATP potentiates the activity of 5-MCDG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Transtorno Bipolar (TB) tipo I é uma doença caracterizada por episódios de mania e depressão recorrentes com importante prejuízo do funcionamento global e comprometimento das funções cognitivas. Além disso, sabe-se que o número de episódios de humor patológico ao longo da vida pode também influenciar o funcionamento cognitivo destes sujeitos. Neste cenário, ocorreu a necessidade de se investigar marcadores genéticos para disfunção cognitiva no TB com o objetivo de estudar este fenômeno. Dentre os potenciais genes responsáveis por influenciar a cognição destacam-se os polimorfismos funcionais do fator neurotrófico derivado do cérebro (BDNF), da catecol-O-metiltransferase (COMT), da apolipoproteína-E (APOE) e do canal de cálcio de baixa voltagem subunidade 1-C (CACNA1C). Sabe-se, também, que no TB os marcadores de estresse oxidativo estão aumentados durante todas as fases da doença, entretanto, não é claro qual impacto destes na disfunção cognitiva de indivíduos com TB. O objetivo dessa tese foi avaliar o desempenho cognitivo de pacientes jovens com bipolaridade tipo I e sua associação com o genótipo de BDNF, COMT, APOE e CACNA1C e também com os níveis plasmáticos de oxidação da guanosina (8-OHdG) e citosina (5-Mec) durante os episódios de humor, eutimia e em controles. Para investigar essa associação foram incluídos 116 pacientes (79 em episódio de humor patológico e 37 eutímicos) com diagnóstico de TB tipo I (DSMIV-TR); 97 controles saudáveis foram submetidos à avaliação neuropsicológica e coleta de sangue para extração de DNA visando genotipagem para BDNF (rs6265), COMT (rs4680; rs165599), APOE (rs429358 e rs7412), CACNA1C (rs1006737), 8-OhdG e 5-Mec. A análise dos dados obtidos revelou que pacientes portadores do genótipo Met/Met rs4680/rs165599 do COMT apresentam comprometimento cognitivo mais grave (função executiva, fluência verbal, memória e inteligência) comparado ao genótipo Val/Met ou Val/Val durante episódios maníacos ou mistos. Na mesma direção destes resultados, verificou-se que pacientes portadores do alelo Met rs4680 do COMT apresentam comprometimento do reconhecimento de emoções faciais em episódios de mania e depressão. Nenhum efeito do COMT foi observado em controles. O alelo de risco Met do CACNA1C se associou a um pior comprometimento executivo independente dos sintomas maníacos ou depressivos no TB, porém nenhum efeito se observou nos controles. O alelo Met do BDNF rs6265 ou a presença do alelo 4 da APOE não representa um fator que identifique um grupo com desempenho cognitivo diferenciado durante as fases do TB ou em controles. Sujeitos com TB apresentaram níveis mais elevados de 8-OHdG e tais níveis eram diretamente proporcionais ao número de episódios maníacos ao longo da vida, sugerindo um papel dos episódios hiperdopaminérgicos na oxidação das bases de DNA. Concluiu-se que a genotipagem para COMT e CACNA1C em pacientes com TB pode identificar um grupo de pacientes associados a pior disfunção cognitiva durante as fases maníacas e mistas do TB. Tal dado pode ser um indicador do envolvimento do sistema dopaminérgico e dos canais de cálcio de baixa voltagem na fisiopatologia da disfunção cognitiva no TB e deve ser explorado em outros estudos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial DNA activates mouse macrophages, B cells, and dendritic cells in a TLR9-dependent manner. Although short ssCpG-containing phosphodiester oligonucleotides (PO-ODN) can mimic the action of bacterial DNA on macrophages, they are much less immunostimulatory than Escherichia coli DNA. In this study we have assessed the structural differences between E. coli DNA and PO-ODN, which may explain the high activity of bacterial DNA on macrophages. DNA length was found to be the most important variable. Double-strandedness was not responsible for the increased activity of long DNA. DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) methylation of E. coli DNA did not enhance macrophage NO production. The presence of two CpG motifs on one molecule only marginally improved activity at low concentration, suggesting that ligand-mediated TLR9 cross-linking was not involved. The major contribution was from DNA length. Synthetic ODN > 44 nt attained the same levels of activity as bacterial DNA. The response of macrophages to CpG DNA requires endocytic uptake. The length dependence of the CpG ODN response was found to correlate with the presence in macrophages of a length-dependent uptake process for DNA. This transport system was absent from B cells and fibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methylation of cytosinc residues in DNA is thought to play an important role in the regulation of gene expression, with active genes generally being hypomethylated. With this in mind peptides were synthcsised to mimic the cytosine-5 methylation activity carried out by DNA mcthylase, which however, showed no ability to carry out this function. The imidazotetrazinoncs are a novel group of antitumour agents which have demonstrated good activity against a range of murinc tumours and human tumour xenografts, and hypomethylation of DNA has been implicated in the mechanism of action. Studies have been conducted on the mechanism by which such agents cause hypomethylation, using DNA methylase partially purified from murine L1210 leukaemia cells. Unmodified calf thymus DNA does not inhibit the transfer of methyl groups from SAM to M.lysodeikticus DNA by partially purified DNA methylase. However, if the calf thymus DNA is modified by alkylating agents such as imida-zotetrazinones or nitrosoureas, the treated DNA becomes an inhibitor of the methylation reaction. This has been correlated with the induction of DNA damage, such as single strand breaks, since X-ray treated DNA and deoxyribonuclease treatment produces a similar effect. The mechanism of inhibition by the drug treated or damaged DNA is thought to occur by binding of the enzyme to an increased concentration of non-substrate DNA, presumably by the occurrence of single strand breaks, since neither sonication nor treatment with the restriction enzyme Mspl caused an inhibition. Attempts were made to elucidate the strict structure activity relationship for antitumour activity observed amongst the imidazotctrazinones. The transfection of a murine colon adcnocarcinoma cell line (MAC 13) with DNA extracted from GM892 or Raji cells previously treated with either the methyl (temozolomide) or ethyl (ethazolastone) imidazotetrazinone was performed. X-irradiated DNA did not cause any suppression of cell growth, suggesting that it was not due to physical damage. Transfection of MAC 13 cells with DNA extracted from GM892 cells, was more effective at inhibiting growth than DNA from Raji cells. Temozolomide treated cellular DNA was a more potent growth inhibitor than that from ethazolastone treated cells. For both agents the growth inhibitory effect was most marked with DNA extracted 6h after drug addition, and after 24h no growth suppression was observed. This suggested that the growth inhibitory effect is due to a repairable lesion. .The methylation of M.lysodeikticus DNA by DNA methylase is inhibited potently and specifically by both hereto and homoribo and dcoxyri-bopolynucleotides containing guanine residues. The inhibitory effect is unaffected by chain length or sugar residue, but is abolished when the O-6 residue of guanine is substituted as in poly d(OGG)2o. Potent inhibition is also shown by polyinosinic and polyxanthylic acids but not by polyadenylic acid or by heteropolymers containing adcnine and thymine. These results suggest that the 6 position of the purine nucleus is important in binding of the DNA methylase to particular regions of the DNA and that the hydrogen bonding properties of this group are important in enzyme recognition. This was confirmed using synthetic oligonucleotides as substrates for DNA methylase. Enzymatic methylation of cytosine is completely suppressed, when O6 methylguanine replaces guanine in CG sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 59 rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs. Published by Cold Spring Harbor Laboratory Press. Copyright © 2008 RNA Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our finding that the inhibitors of DNA methylation, 5-azacytidine, 5-azadeoxycytidine or adenosine dialdehyde, given after a carcinogen all potentiated initiation suggested that hypomethylation of DNA during repair synthesis of DNA might play a role in the initiation of the carcinogenic process. To examine this aspect further, we have asked the question, do the nodules which develop from initiated cells after promotion with 1% orotic acid exhibit an altered methylation pattern in their DNA? The methylation status of the DNA from nodules has been examined using the restriction endonucleases HpaII/MspI and HhaI which distinguish between methylated and unmethylated cytosines in their nucleotide recognition DNA 5'-CCGG and 5'-GCGC respectively. The proto-oncogenes, c-myc, c-fos and c-Ha-ras, in the DNA were primarily studied in this investigation because of their possible involvement in cell proliferation and/or in cell transformation and tumorigenesis. The results indicate that in the nodule DNA, c-myc and c-fos are hypomethylated in the sequence of CCGG while the c-Ha-ras shows hypomethylation in the alternating GCGC sequence. This methylation pattern seen in the nodule DNA is not found in the DNA of the non-nodular surrounding liver or liver tissue after exposure to promoter or carcinogen alone. It is also not found in the DNA of regenerating liver. It is particularly significant that the methylation patterns in the c-myc and c-Ha-ras regions are similar to those found in several cancer tissues. The results suggest that this methylation pattern is acquired early in the carcinogenic process and raises the question whether it has any bearing on the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of interaction of Au(III) with nucleic acids was studied by using methods such as uv and ir spectrophotometry, viscometry, pH titrations, and melting-temperature measurements. Au(III) is found to interact slowly with nucleic acids over a period of several hours. The uv spectra of native calf-thymus DNA 9pH 5.6 acetate buffer containing (0.01M NaCIO4) showed a shift in λ max to high wavelengths and an increase in optical density at 260 nm. There was a fourfold decrease in viscosity (expressed as ηsp/c). The reaction was faster at pH 4.0 and also with denatured DNA (pH 5.6) and whole yeast RNA (pH 5.6). The order of preference of Au(III) (as deduced from the time of completion of reaction) for the nucleic acids in RNA > denatured DNA > DNA. The reaction was found to be completely reversible with respect KCN. Infrared spectra of DNA-Au(III) complexes showed binding to both the phosphate and bases of DNA. The same conclusions were also arrived at by melting-temperature studies of Au(III)-DNA system. pH titrations showed liberation of two hydroxylions at r = 0.12 [r = moles of HAuCl4 added per mole of DNA-(P)] and one hydrogen ion at r = 0.5. The probable binding sites could be N(1)/N(7) of adenine, N(7) and/or C(6)O of guanine, N(3) of cytosine and N(3) of thymine. DNAs differing in their (G = C)-contents [Clostridium perfingens DNA(G = C, 29%), salmon sperm DNA (G + C, 42%) and Micrococcus lysodeikticus DNA(G + C, 29%), salmon sperm DNA (G = C, 72%)] behaved differently toward Au(III). The hyperchromicity observed for DNAs differing in (G + C)-content and cyanide reversal titrations indicate selectivity toward ( A + T)-rich DNA at lw values of r. Chemical analysis and job's continuous variation studies indicated the existence of possible complexes above and below r = 1. The results indicate that Au(III) ions probably bind to hte phosphate group in the initial stages of the reaction, particularly at low values of r, and participation of the base interaction also increases. Cross-linking of the two strands by Au(III) may take place, but a complete collapse of the doulbe helix is not envisaged. It is probable that tilting of the bases or rotaiton of the bases around the glucosidic bond, resulting in a significant distrotion of the double helix, might take place due to binding of Au(III) to DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA cytosine methylation is a conserved epigenetic modification frequently correlating with transcriptional silencing in a wide variety of eukaryotic organisms. Sodium bisulfite treatment of DNA converts unmethylated cytosine to uracil, while 5-methylated cytosine is protected. We describe techniques that ensure reliable sequencing data following sodium bisulfite conversion and to avoid common pitfalls such as amplification of unconverted DNA and inclusion of sibling clones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes research pursued in two areas, both involving the design and synthesis of sequence specific DNA-cleaving proteins. The first involves the use of sequence-specific DNA-cleaving metalloproteins to probe the structure of a protein-DNA complex, and the second seeks to develop cleaving moieties capable of DNA cleavage through the generation of a non-diffusible oxidant under physiological conditions.

Chapter One provides a brief review of the literature concerning sequence-specific DNA-binding proteins. Chapter Two summarizes the results of affinity cleaving experiments using leucine zipper-basic region (bZip) DNA-binding proteins. Specifically, the NH_2-terminal locations of a dimer containing the DNA binding domain of the yeast transcriptional activator GCN4 were mapped on the binding sites 5'-CTGACTAAT-3' and 5'ATGACTCTT- 3' using affinity cleaving. Analysis of the DNA cleavage patterns from Fe•EDTA-GCN4(222-281) and (226-281) dimers reveals that the NH_2-termini are in the major groove nine to ten base pairs apart and symmetrically displaced four to five base pairs from the central C of the recognition site. These data are consistent with structural models put forward for this class of DNA binding proteins. The results of these experiments are evaluated in light of the recently published crystal structure for the GCN4-DNA complex. Preliminary investigations of affinity cleaving proteins based on the DNA-binding domains of the bZip proteins Jun and Fos are also described.

Chapter Three describes experiments demonstrating the simultaneous binding of GCN4(226-281) and 1-Methylimidazole-2-carboxamide-netropsin (2-ImN), a designed synthetic peptide which binds in the minor groove of DNA at 5'-TGACT-3' sites as an antiparallel, side-by-side dimer. Through the use of Fe•EDTA-GCN4(226-281) as a sequence-specific footprinting agent, it is shown that the dimeric protein GCN4(226-281) and the dimeric peptide 2- ImN can simultaneously occupy their common binding site in the major and minor grooves of DNA, respectively. The association constants for 2-ImN in the presence and in the absence of Fe•EDTA-GCN4(226-281) are found to be similar, suggesting that the binding of the two dimers is not cooperative.

Chapter Four describes the synthesis and characterization of PBA-β-OH-His- Hin(139-190), a hybrid protein containing the DNA-binding domain of Hin recombinase and the putative iron-binding and oxygen-activating domain of the antitumor antibiotic bleomycin. This 54-residue protein, comprising residues 139-190 of Hin recombinase with the dipeptide pyrimidoblamic acid-β-hydroxy-L-histidine (PBA-β-OH-His) at the NH2 terminus, was synthesized by solid phase methods. PBA-β-OH-His-Hin(139- 190) binds specifically to DNA at four distinct Hin binding sites with affinities comparable to those of the unmodified Hin(139-190). In the presence of dithiothreitol (DTT), Fe•PB-β-OH-His-Hin(139-190) cleaves DNA with specificity remarkably similar to that of Fe•EDTA-Hin(139-190), although with lower efficiency. Analysis of the cleavage pattern suggests that DNA cleavage is mediated through a diffusible species, in contrast with cleavage by bleomycin, which occurs through a non-diffusible oxidant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery that the three ring polyamide Im-Py-Py-Dp containing imidazole (Im) and pyrrole (Py) carboxamides binds the DNA sequence 5'-(A,T)G(A,T)C(A,T)-3' as an antiparallel dimer offers a new model for the design of ligands for specific recognition of sequences in the minor groove containing both G,C and A,T base pairs. In Chapter 2, experiments are described in which the sequential addition of five N- methylpyrrolecarboxamides to the imidazole-pyrrole polyamide Im-Py-Py-Dp affords a series of six homologous polyamides, Im-(Py)2-7-Dp, that differ in the size of their binding site, apparent first order binding affinity, and sequence specificity. These results demonstrate that DNA sequences up to nine base pairs in length can be specifically recognized by imidazole-pyrrole polyamides containing three to seven rings by 2:1 polyamide-DNA complex formation in the minor groove. Recognition of a nine base pair site defines the new lower limit of the binding site size that can be recognized by polyamides containing exclusively imidazole and pyrrolecarboxamides. The results of this study should provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity.

In Chapter 3 the design and synthesis of the hairpin polyamide Im-Py-Im-Py-γ-Im- Py-Im-Py-Dp is described. Quantitative DNase I footprint titration experiments reveal that Im-Py-Im-Py-γ-Im-Py-Im-Py-Dp binds six base pair 5'-(A,T)GCGC(A,T)-3' sequences with 30-fold higher affinity than the unlinked polyamide Im-Py-Im-Py-Dp. The hairpin polyamide does not discriminate between A•T and T•A at the first and sixth positions of the binding site as three sites 5'-TGCGCT-3', 5'-TGCGCA-3', and 5 'AGCGCT- 3' are bound with similar affinity. However, Im-Py-Im-Py-γ-Im-Py-Im-PyDp is specific for and discriminates between G•C and C•G base pairs in the 5'-GCGC-3' core as evidenced by lower affinities for the mismatched sites 5'-AACGCA-3', 5'- TGCGTT-3', 5'-TGCGGT-3', and 5'-ACCGCT-3'.

In Chapter 4, experiments are described in which a kinetically stable hexa-aza Schiff base La3+ complex is covalently attached to a Tat(49-72) peptide which has been shown to bind the HIV-1 TAR RNA sequence. Although these metallo-peptides cleave TAR site-specifically in the hexanucleotide loop to afford products consistent with hydrolysis, a series of control experiments suggests that the observed cleavage is not caused by a sequence-specifically bound Tat(49-72)-La(L)3+ peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

用9种限制性内切酶分析大熊猫的线粒体DNA(mtDNA)。构建其中5种酶(BamHI 、EcoRI、EcoR V、Ps+I、PvuⅡ)的mtDNA物理图谱。大熊猫mtDNA的分子大小约 为16.4kb, 酶切位点是随机 分布的。图3表2参15