980 resultados para DEPENDENT QUANTUM PROBLEMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-electron capture in 14 keV q(-1) Ar15+...18++He collisions is investigated both experimentally and theoretically. Partial cross sections and projectile scattering angle dependencies have been deduced from the target ion recoil momenta measured by the COLTRIMS technique. The comparison with close-coupling results obtained from a two-centre extension of the basis generator method yields good overall agreement, demonstrating the applicability of close-coupling calculations to collision systems involving highly charged ions in charge states up to 18+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly differential experimental results of the scattering system He++ on He at 30 keV are presented as well as a complete unified theoretical description where excitation, transfer and ionization are treated simultaneously on an ab initio level. The agreement even for highly differential cross sections is nearly complete although no explicit correlation besides Pauli correlation is included in the calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we intend to study a class of time-dependent quantum systems with non-Hermitian Hamiltonians, particularly those whose Hermitian counterparts are important for the comprehension of posed problems in quantum optics and quantum chemistry. They consist of an oscillator with time-dependent mass and frequency under the action of a time-dependent imaginary potential. The wave functions are used to obtain the expectation value of the Hamiltonian. Although it is neither Hermitian nor PT symmetric, the Hamiltonian under study exhibits real values of energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.

The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Influences of the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependant interaction (MDI) on the isotope scaling are investigated by using the isospin-dependent quantum molecular dynamics model (IQMD). The results show that both the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependent interaction affect the isoscaling parameters appreciably and independently. The influence caused by the isospin dependence of two-body collision is relatively larger than that from the MDI in the mean field. Aiming at exploring the implication of isoscaling behaviour, which the statistical equilibrium in the reaction is reached, the statistical properties in the mass distribution and the kinetic energy distribution of the fragments simulated by IQMD are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influences of the isospin dependent in-medium nucleon-nucleon cross section and the MomentumDependent Interaction(MDI) on the isotope scaling have been investigated within the Isospin dependent Quantum Molecular Dynamics Model(IQMD). The results show that both the isospin dependent in-medium nucleon-nucleon cross section and the momentum interaction reduce the isoscaling parameter a appreciably, which means they decrease the dependence of yield ratios of two systems on the isospin difference between two systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An isospin degree of freedom is inserted into the momentum dependent interaction in the quantum molecular dynamics model to obtain an isospin dependent momentum interaction given in a form practically usable in isospin dependent quantum molecular dynamics model. We investigate the entrance channel effects for the role of isospin momentum dependent interaction on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the isospin dependent momentum interaction induces a significant reduction of isospin fractionation ratio under all entrance channel conditions. However the strong dependence of isospin fractionation ratio on the symmetry potential is preserved after considering the isospin degree of freedom in the momentum dependent interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Influences of the isospin-dependent in-medium nucleon nucleon cross-section (sigma(iso)(NN) and momentum-dependent interaction (MDI) on the isoscaling parameter a are investigated for two central collisions Ca-40 +Ca-40 and Ca-60+ Ca-60. These collisions are with isospin dependent quantum molecular dynamics in the beam energy region from 40 to 60 MeV/nucleon. The isotope yield ratio R-21 (N, Z) for the above two central collisions depends exponentially on the neutron number N and proton number Z of isotopes, with an isoscaling. In particular, the isospin-dependent (sigma(iso)(NN) and MDI induce an obvious de crease of the isoscaling parameter a. The mechanism of the decreases of a by both sigma(iso)(NN) and MDI are studied respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurate three-dimensional time-dependent quantum wave packet calculations for the N+OH reaction on the (3)A' potential energy surface [Guadagnini, Schatz, and Walch, J. Chem. Phys. 102, 774 (1995)] have been carried out. The calculations show for the first time that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The calculated reaction cross sections indicate that they are a decreasing function of the translational energy, which is in agreement qualitatively with the quasiclassical trajectory calculations. The rate constants obtained from the quantum mechanical calculations are consistent with the quasiclassical trajectory results and the experimental measurements. (C) 2003 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma Nanoscience is a multidisciplinary research field which aims to elucidate the specific roles, purposes, and benefits of the ionized gas environment in assembling and processing nanoscale objects in natural, laboratory and technological situations. Compared to neutral gas-based routes, in low-temperature weakly-ionized plasmas there is another level of complexity related to the necessity of creating and sustaining a suitable degree of ionization and a much larger number of species generated in the gas phase. The thinner the nanotubes, the stronger is the quantum confinement of electrons and more unique size-dependent quantum effects can emerge. Furthermore, due to a very high mobility of electrons, the surfaces are at a negative potential compared to the plasma bulk. Therefore, there are non-uniform electric fields within the plasma sheath. The electric field lines start in the plasma bulk and converge to the sharp tips of the developing one-dimensional nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A time-dependent quantum mechanical (TDQM) method of wavepacket propagation in computing resonance Raman intensities for polyatomic systems, has been developed and demonstrated by applying it tocis-stilbene andtrans-azobenzene. In the case of the former, Raman excitation profiles (REPs) for the various vibrational modes have also been computed. It is observed that the calculated absorption spectrum and the REPs compare very well with the experimental results. A comparison of these results with those of the often semiclassical approach reveals that the TDQM method can be used to study polyatomic systems with as much ease as the semiclassical wavepacket method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The blue emission of ethyl-hexyl substituted polyfluorene (PF2/6) films is accompanied by a low energy green emission peak around 500 nm in inert atmosphere. The intensity of this 500 nm peak is large in electroluminescence (EL) compared to photoluminescence (PL)measurements. Furthermore, the green emission intensity reduces dramatically in the presence of molecular oxygen. To understand this, we have modeled various nonradiative processes by time dependent quantum many body methods. These are (i) intersystem crossing to study conversion of excited singlets to triplets leading to a phosphorescence emission, (ii) electron-hole recombination (e-hR) process in the presence of a paramagnetic impurity to follow the yield of triplets in a polyene system doped with paramagnetic metal atom, and (iii) quenching of excited triplet states in the presence of oxygen molecules to understand the low intensity of EL emission in ambient atmosphere, when compared with that in nitrogen atmosphere. We have employed the Pariser-Parr-Pople Hamiltonian to model the molecules and have invoked electron-electron repulsions beyond zero differential approximation while treating interactions between the organic molecule and the rest of the system. Our time evolution methods show that there is a large cross section for triplet formation in the e-hR process in the presence of paramagnetic impurity with degenerate orbitals. The triplet yield through e-hR process far exceeds that in the intersystem crossing pathway, clearly pointing to the large intensity of the 500 nm peak in EL compared to PL measurements. We have also modeled the triplet quenching process by a paramagnetic oxygen molecule which shows a sizable quenching cross section especially for systems with large sizes. These studies show that the most probable origin of the experimentally observed low energy EL emission is the triplets.