971 resultados para DENTAL EROSION
Resumo:
Gastroesophageal reflux disease (GERD) is a gastrointestinal disorder in which stomach acids are chronically regurgitated into the esophagus and oral cavity. Continual exposure of the teeth to these acids can cause severe tooth wear. Dentists are often the first healthcare professionals to diagnose dental erosion in patients with GERD. This article presents a case report of a 27-year-old male smoker with tooth wear and dentin sensitivity caused by GERD associated with bruxism. After diagnosis, a multidisciplinary treatment plan was established. The initial treatment approach consisted of medical follow-up with counseling on dietary and smoking habits, as well as management of the gastric disorders with medication. GERD management and the dental treatment performed for the eroded dentition are described, including diagnosis, treatment planning, and restorative therapy.
Resumo:
In published studies, it has been suggested that dental wear is associated with gastroesophageal reflux disease (GERD). This systematic review was carried out to evaluate the association of GERD, dental erosion, and halitosis and to compare the indices adopted in epidemiological surveys. The Medline database (until October, 2011) was searched systematically to identify studies evaluating the prevalence of oral alterations, such as dental erosion and halitosis, in patients with GERD symptoms. Two reviewers analyzed all reports and the selected studies were evaluated according to the quality of evidence, using the validated Newcastle–Ottawa Quality Assessment Scale. Full-text copies of a total of 32 publications were obtained in duplicate. Sixteen publications were identified among the citations in the Bibliographic lists of studies that fulfilled the exclusion/inclusion criteria and quality of evidence. The relationship between dental erosion and GERD patients was significant in only seven studies. According to three studies, halitosis could be one of several extraesophageal symptoms or manifestations in GERD patients. In one study, it was found that the mucosa of GERD patients was significantly more acidic in comparison with that of the control group. This systematic review showed that there is a relationship between GERD and oral diseases (dental erosion and halitosis). The epidemiological surveys used different indices to analyze GERD and dental erosion. Further research could investigate the best method for assessing the two diseases.
Resumo:
Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.
Resumo:
Studies have shown a growing trend toward increasing prevalence of dental erosion, associated with the declining prevalence of caries disease in industrialized countries. Erosion is an irreversible chemical process that results in tooth substance loss and leaves teeth susceptible to damage as a result of wear over the course of an individual's lifetime. Therefore, early diagnosis and adequate prevention are essential to minimize the risk of tooth erosion. Clinical appearance is the most important sign to be used to diagnose erosion. The Basic Erosive Wear Examination (BEWE) is a simple method to fulfill this task. The determination of a variety of risk and protective factors (patient-dependent and nutrition-dependent factors) as well as their interplay are necessary to initiate preventive measures tailored to the individual. When tooth loss caused by erosive wear reaches a certain level, oral rehabilitation becomes necessary.
Resumo:
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ? -0.86) as well as calcium release (r(2) ? -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Resumo:
Dental erosion develops through chronic exposure to extrinsic/intrinsic acids with a low pH. Enamel erosion is characterized by a centripetal dissolution leaving a small demineralized zone behind. In contrast, erosive demineralization in dentin is more complex as the acid-induced mineral dissolution leads to the exposure of collagenous organic matrix, which hampers ion diffusion and, thus, reduces further progression of the lesion. Topical fluoridation inducing the formation of a protective layer on dental hard tissue, which is composed of CaF(2) (in case of conventional fluorides like amine fluoride or sodium fluoride) or of metal-rich surface precipitates (in case of titanium tetrafluoride or tin-containing fluoride products), appears to be most effective on enamel. In dentin, the preventive effect of fluorides is highly dependent on the presence of the organic matrix. In situ studies have shown a higher protective potential of fluoride in enamel compared to dentin, probably as the organic matrix is affected by enzymatical and chemical degradation as well as by abrasive influences in the clinical situation. There is convincing evidence that fluoride, in general, can strengthen teeth against erosive acid damage, and high-concentration fluoride agents and/or frequent applications are considered potentially effective approaches in preventing dental erosion. The use of tin-containing fluoride products might provide the best approach for effective prevention of dental erosion. Further properly designed in situ or clinical studies are recommended in order to better understand the relative differences in performance of the various fluoride agents and formulations.
Resumo:
The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion.
Resumo:
The acquired enamel pellicle that forms on the tooth surface serves as a natural protective barrier against dental erosion. Numerous proteins composing the pellicle serve different functions within this thin layer. Our study examined the effect of incorporated mucin and casein on the erosion-inhibiting potential of the acquired enamel pellicle. Cyclic acidic conditions were applied to mimic the erosive environment present at the human enamel interface during the consumption of soft drinks. One hundred enamel specimens were prepared for microhardness tests and distributed randomly into 5 groups (n = 20) that received the following treatment: deionized water, humidity chamber, mucin, casein, or a combination of mucin and casein. Each group was exposed to 3 cycles of a 2-hour incubation in human saliva, followed by a 2-hour treatment in the testing solution and a 1-min exposure to citric acid. The microhardness analysis demonstrated that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. The addition of individual proteins did not statistically impact the function of the pellicle. These data suggest that protein-protein interactions may play an important role in the effectiveness of the pellicle to prevent erosion.
Resumo:
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
Resumo:
Dental erosion is the non-carious dental substance loss induced by direct impact of exogenous or endogenous acids. It results in a loss of dental hard tissue, which can be serious in some groups, such as those with eating disorders, in patients with gastroesophageal reflux disease, and also in persons consuming high amounts of acidic drinks and foodstuffs. For these persons, erosion can impair their well-being, due to changes in appearance and/or loss of function of the teeth, e.g., the occurrence of hypersensitivity of teeth if the dentin is exposed. If erosion reaches an advanced stage, time- and money-consuming therapies may be necessary. The therapy, in turn, poses a challenge for the dentist, particularly if the defects are diagnosed at an advanced stage. While initial and moderate defects can mostly be treated non- or minimally invasively, severe defects often require complex therapeutic strategies, which often entail extensive loss of dental hard tissue due to preparatory measures. A major goal should therefore be to diagnose dental erosion at an early stage, to avoid functional and esthetic impairments as well as pain sensations and to ensure longevity of the dentition.
Resumo:
A high prevalence of gastroesophageal reflux (GERD) has been observed in individuals with cerebral palsy (CP). One of the main risks for dental erosion is GERD. This study aimed to evaluate the presence of GERD, variables related to dental erosion and associated with GERD (diet consumption, gastrointestinal symptoms, bruxism), and salivary flow rate, in a group of 46 non-institutionalized CP individuals aged from 3 to 13 years.
Resumo:
Erosive tooth wear in children is a common condition. The overlapping of erosion with mechanical forces like attrition or abrasion is probably in deciduous teeth more pronounced than in permanent teeth. Early erosive damage to the permanent teeth may compromise the dentition for the entire lifetime and require extensive restorative procedures. Therefore, early diagnosis of the condition and adequate preventive measures are of importance. Knowledge of the etiological factors for erosive tooth wear is a prerequisite for such measures. In children and adolescents (like in adults) extrinsic and intrinsic factors or a combination of them are possible reasons for the condition. Such factors are frequent and extensive consumption of erosive foodstuffs and drinks, the intake of medicaments (asthma), gastro-esophageal reflux (a case history is discussed) or vomiting. But also behavioral factors like unusual eating and drinking habits, the consumption of designer drugs and socio-economic aspects are of importance.
Resumo:
The mineral in our teeth is composed of a calcium-deficient carbonated hydroxyapatite (Ca10-xNax(PO4)6-y(CO3)z(OH)2-uFu). These substitutions in the mineral crystal lattice, especially carbonate, renders tooth mineral more acid soluble than hydroxyapatite. During erosion by acid and/or chelators, these agents interact with the surface of the mineral crystals, but only after they diffuse through the plaque, the pellicle, and the protein/lipid coating of the individual crystals themselves. The effect of direct attack by the hydrogen ion is to combine with the carbonate and/or phosphate releasing all of the ions from that region of the crystal surface leading to direct surface etching. Acids such as citric acid have a more complex interaction. In water they exist as a mixture of hydrogen ions, acid anions (e.g. citrate) and undissociated acid molecules, with the amounts of each determined by the acid dissociation constant (pKa) and the pH of the solution. Above the effect of the hydrogen ion, the citrate ion can complex with calcium also removing it from the crystal surface and/or from saliva. Values of the strength of acid (pKa) and for the anion-calcium interaction and the mechanisms of interaction with the tooth mineral on the surface and underneath are described in detail.