951 resultados para DATA-STORAGE
Resumo:
After sales business is an effective way to create profit and increase customer satisfaction in manufacturing companies. Despite this, some special business characteristics that are linked to these functions, make it exceptionally challenging in its own way. This Master’s Thesis examines the current situation of the data and inventory management in the case company regarding possibilities and challenges related to the consolidation of current business operations. The research examines process steps, procedures, data requirements, data mining practices and data storage management of spare part sales process, whereas the part focusing on inventory management is reviewing the current stock value and examining current practices and operational principles. There are two global after sales units which supply spare parts and issues reviewed in this study are examined from both units’ perspective. The analysis is focused on the operations of that unit where functions would be centralized by default, if change decisions are carried out. It was discovered that both data and inventory management include clear shortcomings, which result from lack of internal instructions and established processes as well as lack of cooperation with other stakeholders related to product’s lifecycle. The main product of data management was a guideline for consolidating the functions, tailored for the company’s needs. Additionally, potentially scrapped spare part were listed and a proposal of inventory management instructions was drafted. If the suggested spare part materials will be scrapped, stock value will decrease 46 percent. A guideline which was reviewed and commented in this thesis was chosen as the basis of the inventory management instructions.
Resumo:
Remote Data acquisition and analysing systems developed for fisheries and related environmental studies have been reported. It consists of three units. The first one namely multichannel remote data acquisition system is installed at the remote place powered by a rechargeable battery. It acquires and stores the 16 channel environmental data on a battery backed up RAM. The second unit called the Field data analyser is used for insitue display and analysis of the data stored in the backed up RAM. The third unit namely Laboratory data analyser is an IBM compatible PC based unit for detailed analysis and interpretation of the data after bringing the RAM unit to the laboratory. The data collected using the system has been analysed and presented in the form of a graph. The system timer operated at negligibly low current, switches on the power to the entire remote operated system at prefixed time interval of 2 hours.Data storage at remote site on low power battery backedupRAM and retrieval and analysis of data using PC are the special i ty of the system. The remote operated system takes about 7 seconds including the 5 second stabilization time to acquire and store data and is very ideal for remote operation on rechargeable bat tery. The system can store 16 channel data scanned at 2 hour interval for 10 days on 2K backed up RAM with memory expansion facility for 8K RAM.
Resumo:
Due to the advancement of both, information technology in general, and databases in particular; data storage devices are becoming cheaper and data processing speed is increasing. As result of this, organizations tend to store large volumes of data holding great potential information. Decision Support Systems, DSS try to use the stored data to obtain valuable information for organizations. In this paper, we use both data models and use cases to represent the functionality of data processing in DSS following Software Engineering processes. We propose a methodology to develop DSS in the Analysis phase, respective of data processing modeling. We have used, as a starting point, a data model adapted to the semantics involved in multidimensional databases or data warehouses, DW. Also, we have taken an algorithm that provides us with all the possible ways to automatically cross check multidimensional model data. Using the aforementioned, we propose diagrams and descriptions of use cases, which can be considered as patterns representing the DSS functionality, in regard to DW data processing, DW on which DSS are based. We highlight the reusability and automation benefits that this can be achieved, and we think this study can serve as a guide in the development of DSS.
Resumo:
In this paper we describe Fénix, a data model for exchanging information between Natural Language Processing applications. The format proposed is intended to be flexible enough to cover both current and future data structures employed in the field of Computational Linguistics. The Fénix architecture is divided into four separate layers: conceptual, logical, persistence and physical. This division provides a simple interface to abstract the users from low-level implementation details, such as programming languages and data storage employed, allowing them to focus in the concepts and processes to be modelled. The Fénix architecture is accompanied by a set of programming libraries to facilitate the access and manipulation of the structures created in this framework. We will also show how this architecture has been already successfully applied in different research projects.
Resumo:
The increasing demand for high capacity data storage requires decreasing the head-to-tape gap and reducing the track width. A problem very often encountered is the development of adhesive debris on the heads at low humidity and high temperatures that can lead to an increase of space between the head and media, and thus a decrease in the playback signal. The influence of stains on the playback signal of reading heads is studied using RAW (Read After Write) tests and their influence on the wear of the heads by using indentation technique. The playback signal has been found to vary and the errors to increase as stains form a patchy pattern and grow in size to form a continuous layer. The indentation technique shows that stains reduce the wear rate of the heads. In addition, the wear tends to be more pronounced at the leading edge of the head compared to the trailing one. Chemical analysis of the stains using ferrite samples in conjunction with MP (metal particulate) tapes shows that stains contain iron particles and polymeric binder transferred from the MP tape. The chemical anchors in the binder used to grip the iron particles now react with the ferrite surface to create strong chemical bonds. At high humidity, a thin layer of iron oxyhydroxide forms on the surface of the ferrite. This soft material increases the wear rate and so reduces the amount of stain present on the heads. The stability of the binder under high humidity and under high temperature as well as the chemical reactions that might occur on the ferrite poles of the heads influences the dynamic behaviour of stains. A model of stain formation taking into account the channels of binder degradation and evolution upon different environmental conditions is proposed.
Resumo:
The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model's parsing mechanism. The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents.
Resumo:
In order to become better prepared to support Research Data Management (RDM) practices in sciences and engineering, Queen’s University Library, together with the University Research Services, conducted a research study of all ranks of faculty members, as well as postdoctoral fellows and graduate students at the Faculty of Engineering & Applied Science, Departments of Chemistry, Computer Science, Geological Sciences and Geological Engineering, Mathematics and Statistics, Physics, Engineering Physics & Astronomy, School of Environmental Studies, and Geography & Planning in the Faculty of Arts and Science.
Resumo:
After years of deliberation, the EU commission sped up the reform process of a common EU digital policy considerably in 2015 by launching the EU digital single market strategy. In particular, two core initiatives of the strategy were agreed upon: General Data Protection Regulation and the Network and Information Security (NIS) Directive law texts. A new initiative was additionally launched addressing the role of online platforms. This paper focuses on the platform privacy rationale behind the data protection legislation, primarily based on the proposal for a new EU wide General Data Protection Regulation. We analyse the legislation rationale from an Information System perspective to understand the role user data plays in creating platforms that we identify as “processing silos”. Generative digital infrastructure theories are used to explain the innovative mechanisms that are thought to govern the notion of digitalization and successful business models that are affected by digitalization. We foresee continued judicial data protection challenges with the now proposed Regulation as the adoption of the “Internet of Things” continues. The findings of this paper illustrate that many of the existing issues can be addressed through legislation from a platform perspective. We conclude by proposing three modifications to the governing rationale, which would not only improve platform privacy for the data subject, but also entrepreneurial efforts in developing intelligent service platforms. The first modification is aimed at improving service differentiation on platforms by lessening the ability of incumbent global actors to lock-in the user base to their service/platform. The second modification posits limiting the current unwanted tracking ability of syndicates, by separation of authentication and data store services from any processing entity. Thirdly, we propose a change in terms of how security and data protection policies are reviewed, suggesting a third party auditing procedure.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Scientific research is increasingly data-intensive, relying more and more upon advanced computational resources to be able to answer the questions most pressing to our society at large. This report presents findings from a brief descriptive survey sent to a sample of 342 leading researchers at the University of Washington (UW), Seattle, Washington in 2010 and 2011 as the first stage of the larger National Science Foundation project “Interacting with Cyberinfrastructure in the Face of Changing Science.” This survey assesses these researcher’s use of advanced computational resources, data, and software in their research. We present high-level findings that describe UW researchers’: demographics, interdisciplinarity, research groups, data use, software and computational use—including software development and use, data storage and transfer activities, and collaboration tools, and computing resources. These findings offer insights into the state of computational resources in use during this time period as well as offering a look at the data intensiveness of UW researchers.
Resumo:
Carotenoids are biosynthetic organic pigments that constitute an important class of one-dimensional pi-conjugated organic molecules with enormous potential for application in biophotonic devices. In this context, we studied the degenerate two-photon absorption (2PA) cross-section spectra of two carotenoid compounds (beta-carotene and beta-apo-8'-carotenal) employing the conventional and white-light-continuum Z-scan techniques and quantum chemistry calculations. Because carotenoids coexist at room temperature as a mixture of isomers, the 2PA spectra reported here are due to samples containing a distribution of isomers, presenting distinct conjugation length and conformation. We show that these compounds present a defined structure on the 2PA spectra, that peaks at 650 nm with an absorption cross-section of approximately 5000 GM, for both compounds. In addition, we observed a 2PA band at 990 nm for beta-apo-8'-carotenal, which was attributed to a overlapping of I(I)B(u) +-like and 2(I)Ag(-)-like states, which are strongly one- and two-photon allowed, respectively. Spectroscopic parameters of the electronic transitions to singlet-excited states, which are directly related to photophysical properties of these compounds, were obtained by fitting the 2PA spectra using the sum-over-states approach. The analysis and interpretations of the 2PA spectra of the investigated carotenoids were supported by theoretical predictions of one- and two-photon transitions carried out using the response functions formalism within the density functional theory framework, using the long-range corrected CAM-B3LYP functional. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590157]
Resumo:
The fast and reversible phase transition mechanism between crystalline and amorphous phases of Ge(2)Sb(2)Te(5) has been in debate for several years. Through employing first-principles density functional theory calculations, we identify a direct structural link between the metastable crystalline and amorphous phases. The phase transition is driven by the displacement of Ge atoms along the rocksalt [111] direction from stable octahedron to high energy unstable tetrahedron sites close to the intrinsic vacancy regions, which generates a high energy intermediate phase between metastable and amorphous phases. Due to the instability of Ge at the tetrahedron sites, the Ge atoms naturally shift away from those sites, giving rise to the formation of local-ordered fourfold motifs and the long-range structural disorder. Intrinsic vacancies, which originate from Sb(2)Te(3), lower the energy barrier for Ge displacements, and hence, their distribution plays an important role in the phase transition. The high energy intermediate configuration can be obtained experimentally by applying an intense laser beam, which overcomes the thermodynamic barrier from the octahedron to tetrahedron sites. The high figure of merit of Ge(2)Sb(2)Te(5) is achieved from the optimal combination of intrinsic vacancies provided by Sb(2)Te(3) and the instability of the tetrahedron sites provided by GeTe.
Resumo:
UQ eSpace (http://espace.uq.edu.au/) is The University of Queensland's institutional digital repository. The poster outlines all the different ways academic staff and postgraduate students can make use of the repository.
Resumo:
One of the challenges in scientific visualization is to generate software libraries suitable for the large-scale data emerging from tera-scale simulations and instruments. We describe the efforts currently under way at SDSC and NPACI to address these challenges. The scope of the SDSC project spans data handling, graphics, visualization, and scientific application domains. Components of the research focus on the following areas: intelligent data storage, layout and handling, using an associated “Floor-Plan” (meta data); performance optimization on parallel architectures; extension of SDSC’s scalable, parallel, direct volume renderer to allow perspective viewing; and interactive rendering of fractional images (“imagelets”), which facilitates the examination of large datasets. These concepts are coordinated within a data-visualization pipeline, which operates on component data blocks sized to fit within the available computing resources. A key feature of the scheme is that the meta data, which tag the data blocks, can be propagated and applied consistently. This is possible at the disk level, in distributing the computations across parallel processors; in “imagelet” composition; and in feature tagging. The work reflects the emerging challenges and opportunities presented by the ongoing progress in high-performance computing (HPC) and the deployment of the data, computational, and visualization Grids.
Resumo:
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.