942 resultados para Cytochrome b Domain of Mitochondrial DNA
Resumo:
Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.
Resumo:
Transpositions of mtDNA sequences to the nuclear genome have been documented in a wide variety of individual taxa, but little is known about their taxonomic frequency or patterns of variation. We provide evidence of nuclear sequences homologous to the mtDNA control region in seven species of diving ducks (tribe Aythyini). Phylogenetic analysis places each nuclear sequence as a close relative of the mtDNA haplotypes of the specie(s) in which it occurs, indicating that they derive from six independent transposition events, all occurring within the last ≈1.5 million years. Relative-rate tests and comparison of intraspecific variation in nuclear and mtDNA sequences confirm the expectation of a greatly reduced rate of evolution in the nuclear copies. By representing mtDNA haplotypes from ancestral populations, nuclear insertions may be valuable in some phylogenetic analyses, but they also confound the accurate determination of mtDNA sequences. In particular, our data suggest that the presumably nonfunctional but more slowly evolving nuclear sequences often will not be identifiable by changes incompatible with function and may be preferentially amplified by PCR primers based on mtDNA sequences from related taxa.
Resumo:
The mechanisms that underlie the maintenance of and increase in mutant mitochondrial DNA (mtDNA) are central to our understanding of mitochondrial disease. We have therefore developed a technique based on saponin permeabilisation that allows the study of mtDNA synthesis in intact cells. Permeabilisation of cells has been extensively used in an established method both for studying transcription and DNA replication in the nucleus and for measuring respiratory chain activities in mitochondria. We have quantitatively studied incorporation of radiolabelled DNA precursors into mtDNA in human cell lines derived from controls and from patients with mitochondrial DNA disease. Total cell DNA is extracted, restriction digested and Southern blotted, newly synthesised mtDNA being proportional to the label incorporated in each restriction band. A rate of synthesis can then be derived by estimating the relative steady-state mtDNA after probing with full-length mtDNA. Where co-existing mutant and wild-type mtDNA (heteroplasmy) can be distinguished using restriction digestion, their rates of synthesis can be compared within a single cell line. This will be particularly useful in elucidating the pathophysiology of mtDNA diseases in which the distribution of mutant and wild-type mtDNA in cell lines in patient tissues may evolve with time.
Resumo:
We have analyzed the level of intraindividual sequence variability (heteroplasmy) of mtDNA in human brain by denaturing gradient gel electrophoresis and sequencing. Single base substitutions, as well as insertions or deletions of single bases, were numerous in the noncoding control region (D-loop), and 35-45% of the molecules from a single tissue showed sequence differences. By contrast, heteroplasmy in coding regions was not detected. The lower level of heteroplasmy in the coding regions is indicative of selection against deleterious mutations. Similar levels of heteroplasmy were found in two brain regions from the same individual, while no heteroplasmy was detected in blood. Thus, heteroplasmy seems to be more frequent in nonmitotic tissues. We observed a 7.7-fold increase in the frequency of deletions/insertions and a 2.2-fold increase in the overall frequency of heteroplasmic mutations in two individuals aged 96 and 99, relative to an individual aged 28. Our results show that intraindividual sequence variability occurs at a high frequency in the noncoding regions of normal human brain and indicate that small insertions and deletions might accumulate with age at a lower rate than large rearrangements.
Resumo:
When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.
Resumo:
Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays.
Resumo:
Phylogenetic analysis of all 31 described mitochondrial (cytochrome b) haplotypes of Lutzomyia whitmani demonstrated that new material from the State of Rondônia, in southwest Amazônia, forms a clade within a lineage found only in the rain-forest regions of Brazil. This rain-forest lineage also contains two other clades of haplotypes, one from eastern Amazônia and one from the Atlantic forest zone of northeast Brazil (including the type locality of the species in Ilhéus, State of Bahia). These findings do not favour recognizing two allopatric cryptic species of L. whitmani, one associated with the silvatic transmission of Leishmania shawi in southeast Amazônia and the other with the peridomestic transmission of Le. braziliensis in northeast Brazil. Instead, they suggest that there is (or has been in the recent past) a continuum of inter-breeding populations of L. whitmani in the rain-forest regions of Brazil.
Resumo:
The shrews of the Sorer araneus group have undergone a spectacular chromosome evolution. The karyotype of Sorer granarius is generally considered ancestral to those of Sorer coronatus and S. araneus. However, a sequence of 777 base pairs of the cytochrome b gene of the mitochondrial DNA (mtDNA) produces a quite different picture: S. granarius is closely related to the populations of S. araneus from the Pyrenees and from the northwestern Alps, whereas S. coronatus and S. araneus from Italy and the southern Alps represent two well-separated lineages. It is suggested that mtDNA and chromosomal evolution are in this case largely independant processes. Whereas mtDNA haplotypes are closely linked to the geographical history of the populations, chromosomal mutations were probably transmitted from one population to another. Available data suggest that the impressive chromosome polymorphism of this group is quite a recent phenomenon.
Resumo:
We tried to amplify mitochondrial, microsatellite and amelogenin loci in DNA from fecal samples of a wild Mazama americana population. Fifty-two deer fecal samples were collected from a 600-ha seasonal semideciduous forest fragment in a subtropical region of Brazil (21°20′, 47°17′W), with the help of a detection dog; then, stored in ethanol and georeferenced. Among these samples 16 were classified as fresh and 36 as non-fresh. DNA was extracted using the QIAamp® DNA Stool Mini Kit. Mitochondrial loci were amplified in 49 of the 52 samples. Five microsatellite loci were amplified by PCR; success in amplification varied according to locus size and sample age. Successful amplifications were achieved in 10/16 of the fresh and in 13/36 of the non-fresh samples; a negative correlation (R = -0.82) was found between successful amplification and locus size. Amplification of the amelogenin locus was successful in 22 of the 52 samples. The difficulty of amplifying nuclear loci in DNA samples extractedfrom feces collected in the field was evident. Some methodological improvements, including collecting fresh samples, selecting primers for shorter loci and quantifying the extracted DNA by real-time PCR, are suggested to increase amplification success in future studies. © FUNPEC-RP.
Resumo:
A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.
Resumo:
Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.
Resumo:
Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.
Resumo:
The analysis of heteroplasmy (presence of more than one type of mitochondrial DNA in an individual) is used as a tool in human identification studies, anthropology, and most currently in studies that relate heteroplasmy with longevity. The frequency of heteroplasmy and its correlation with age has been analyzed using different tissues such as blood, muscle, heart, bone and brain and in different regions of mitochondrial DNA, but this analysis had never been performed using hair samples. In this study, samples of hair were sequenced in order to ascertain whether the presence or not of heteroplasmy varied according to age, sex and origin of haplogroup individuals. The samples were grouped by age (3 groups), gender (male and female) and haplogroup of origin (European, African and Native American), and analyzed using the chi-square statistical test (chi(2)). Based in statistical results obtained, we conclude that there is no relationship between heteroplasmy and sex, age and haplogroup origin using hair samples.