973 resultados para Cyclooxygenase 2 Inhibitors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: the purpose of this study was to evaluate the effect of a selective cyclooxygenase-2 inhibitor on the progression of alveolar bone loss in an experimental periodontitis model in rats.Methods: One hundred eighty (180) Wistar rats were separated into 3 experimental groups. Cotton ligatures were placed at the gingival margin level of lower right first molars. The rats were randomly assigned to one of the following groups that received: a daily oral dose of 10 mg/kg body weight of celecoxib (Ce1); 20 mg/kg body weight of celecoxib (Ce2); or 10 ml/kg of saline solution (C). Serum levels of celecoxib and white blood cell count were determined. Standardized digital radiographs were taken after sacrifice at 3, 5, 10, 18, and 30 days to measure the amount of bone loss around the mesial root surface of the first molar tooth in each rat.Results: Two-way analysis of variance (ANOVA) indicated that groups treated with celecoxib had significantly less bone loss compared to controls (P <0.0001) and that there was a significant interaction between treatment with celecoxib and time (P <0.03). Post-hoc comparisons showed that in both groups treated with celecoxib, the bone loss became significant only after 10 days of ligature placement, while in the control group it was already significant after 5 days. However, differences in mean bone loss between control and Ce1 were significant only at 18 days and, between control and Ce2, at 5 and 18 days. There was no significant difference in bone loss among experimental groups at the end of the experimental period.Conclusion: These data provide evidence that systemic therapy with celecoxib can modify the progression of experimentally induced periodontitis in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the molecular mechanisms underlying the ATP analogue adenosine-5'-O-(3-thio)triphosphate-induced nucleocytoplasmic shuttling of the mRNA stabilizing factor HuR in human (h) mesangial cells (MC). Using synthetic protein kinase C (PKC) inhibitors and small interfering RNA approaches, we demonstrated that knockdown of PKC alpha efficiently blocked the ATP-dependent nuclear HuR export to the cytoplasm. The functional importance of PKC alpha in HuR shuttling is highlighted by the high cytosolic HuR content detected in hMC stably overexpressing PKC alpha compared with mock-transfected cells. The ATP-induced recruitment of HuR to the cytoplasm is preceded by a direct interaction of PKC alpha with nuclear HuR and accompanied by increased Ser phosphorylation as demonstrated by coimmunoprecipitation experiments. Mapping of putative PKC target sites identified serines 158 and 221 as being indispensable for HuR phosphorylation by PKC alpha. RNA pull-down assay and RNA electrophoretic mobility shift assay demonstrated that the HuR shuttling by ATP is accompanied by an increased HuR binding to cyclooxygenase (COX)-2 mRNA. Physiologically, the ATP-dependent increase in RNA binding is linked with an augmentation in COX-2 mRNA stability and subsequent increase in prostaglandin E(2) synthesis. Regulation of HuR via PKC alpha-dependent phosphorylation emphasizes the importance of posttranslational modification for stimulus-dependent HuR shuttling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Cyclooxygenase-2 (COX-2) is a key enzyme in the synthesis of pro-inflammatory prostaglandins and 5-lipoxygenase (5-LO) is the major source of leukotrienes. Their role in IBD has been demonstrated in humans and animal models, but not in dogs with chronic enteropathies (CCE). HYPOTHESIS COX-2 and 5-LO are upregulated in dogs with CCE. ANIMALS Fifteen healthy control dogs (HCD), 10 dogs with inflammatory bowel disease (IBD), and 15 dogs with food-responsive diarrhea (FRD). METHODS Prospective study. mRNA expression of COX-2, 5-LO, IL-1b, IL-4, IL-6, TNF, IL-10 and TFG-β was evaluated by quantitative real-time RT-PCR in duodenal and colonic biopsies before and after treatment. RESULTS COX-2 expression in the colon was significantly higher in IBD and FRD before and after treatment (all P < .01). IL-1b was higher in FRD in the duodenum after treatment (P = .021). TGF-β expression was significantly higher in the duodenum of HCD compared to FRD/IBD before treatment (both P < .001) and IBD after treatment (P = .012). There were no significant differences among groups and within groups before and after treatment for IL-4, IL-6, TNF, and IL-10. There was a significant correlation between COX-2 and IL-1b in duodenum and colon before treatment in FRD and IBD, whereas 5-LO correlated better with IL-6 and TNF. IL-10 and TGF-β usually were correlated. CONCLUSIONS AND CLINICAL IMPORTANCE COX-2 is upregulated in IBD and FRD, whereas IL-1b and TGF-β seem to be important pro- and anti-inflammatory cytokines, respectively. The use of dual COX/5-LO inhibitors could be an interesting alternative in the treatment of CCE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the role of cyclooxygenase-2 (COX-2) in the late phase of ischemic preconditioning (PC). A total of 176 conscious rabbits were used. Ischemic PC (six cycles of 4-min coronary occlusions/4-min reperfusions) resulted in a rapid increase in myocardial COX-2 mRNA levels (+231 ± 64% at 1 h; RNase protection assay) followed 24 h later by an increase in COX-2 protein expression (+216 ± 79%; Western blotting) and in the myocardial content of prostaglandin (PG)E2 and 6-keto-PGF1α (+250 ± 85% and +259 ± 107%, respectively; enzyme immunoassay). Administration of two unrelated COX-2 selective inhibitors (NS-398 and celecoxib) 24 h after ischemic PC abolished the ischemic PC-induced increase in tissue levels of PGE2 and 6-keto-PGF1α. The same doses of NS-398 and celecoxib, given 24 h after ischemic PC, completely blocked the cardioprotective effects of late PC against both myocardial stunning and myocardial infarction, indicating that COX-2 activity is necessary for this phenomenon to occur. Neither NS-398 nor celecoxib lowered PGE2 or 6-keto-PGF1α levels in the nonischemic region of preconditioned rabbits, indicating that constitutive COX-1 activity was unaffected. Taken together, these results demonstrate that, in conscious rabbits, up-regulation of COX-2 plays an essential role in the cardioprotection afforded by the late phase of ischemic PC. Therefore, this study identifies COX-2 as a cardioprotective protein. The analysis of arachidonic acid metabolites strongly points to PGE2 and/or PGI2 as the likely effectors of COX-2-dependent protection. The recognition that COX-2 mediates the antistunning and antiinfarct effects of late PC impels a reassessment of current views regarding this enzyme, which is generally regarded as detrimental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the effects of selective cyclo-oxygenase-2 (COX 2) inhibitors and traditional non-steroidal anti-inflammatory drugs (NSAIDs) on the risk of vascular events. Design: Meta-analysis of published and unpublished tabular data from randomised trials, with indirect estimation of the effects of traditional NSAIDs. Data sources: Medline and Embase (January 1966 to April 2005); Food and Drug Administration records; and data on file from Novartis, Pfizer, and Merck. Review methods: Eligible studies were randomised trials that included a comparison of a selective COX 2 inhibitor versus placebo or a selective COX 2 inhibitor versus a traditional NSAID, of at least four weeks' duration, with information on serious vascular events (defined as myocardial infarction, stroke, or vascular death). Individual investigators and manufacturers provided information on the number of patients randomised, numbers of vascular events, and the person time of follow-up for each randomised group. Results: In placebo comparisons, allocation to a selective COX 2 inhibitor was associated with a 42% relative increase in the incidence of serious vascular events (1.2%/year v 0.9%/year; rate ratio 1.42, 95% confidence interval 1.13 to 1.78; P = 0.003), with no significant heterogeneity among the different selective COX 2 inhibitors. This was chiefly attributable to an increased risk of myocardial infarction (0.6%/year v 0.3%/year; 1.86, 1.33 to 2.59; P = 0.0003), with little apparent difference in other vascular outcomes. Among trials of at least one year's duration (mean 2.7 years), the rate ratio for vascular events was 1.45 (1.12 to 1.89; P = 0.005). Overall, the incidence of serious vascular events was similar between a selective COX 2 inhibitor and any traditional NSAID (1.0%/year v 0.9/%year; 1.16, 0.97 to 1.38; P = 0.1). However, statistical heterogeneity (P = 0.001) was found between trials of a selective COX 2 inhibitor versus naproxen (1.57, 1.21 to 2.03) and of a selective COX 2 inhibitor versus non-naproxen NSAIDs (0.88, 0.69 to 1.12). The summary rate ratio for vascular events, compared with placebo, was 0.92 (0.67 to 1.26) for naproxen, 1.51 (0.96 to 2.37) for ibuprofen, and 1.63 (1.12 to 2.37) for diclofenac. Conclusions: Selective COX 2 inhibitors are associated with a moderate increase in the risk of vascular events, as are high dose regimens of ibuprofen and diclofenac, but high dose naproxen is not associated with such an excess.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isatin, an indole alkaloid has been shown to have anti-microbial, anti-tumor and anti-inflammatory effects. Due to its findings, we evaluated whether this alkaloid would have any effect on TNBS-induced colitis. Animals (male Unib:WH rats, aged 8 weeks old) were induced colitis through a rectal administration of 2,4,6-trinitrobenzene sulphonic acid using a catheter inserted 8 cm into the rectum of the animals. The rats were divided into two major groups: non-colitic and colitic. The colitic group was sub-divided into 6 groups (10 animals per group): colitic non-treated, Isatin 3; 6; 12.5; 18.75 and 25 mg/kg. Our main results showed that the oral treatment with Isatin 6 and 25 mg/kg were capable of avoiding the increase in TNF-α, COX-2 and PGE₂ levels when compared to the colitic non-treated group. Interestingly, the same doses (6 and 25 mg/kg) were also capable of preventing the decrease in IL-10 levels comparing with the colitic non-treated group. The levels of MPO, (an indirect indicator of neutrophil presence), were also maintained lower than those of the colitic non-treated group. Isatin also prevented the decrease of SOD activity and increase of GSH-Px and GSH-Rd activity as well as the depletion of GSH levels. In conclusion, both pre-treatments (6 and 25 mg/kg) were capable of protecting the gut mucosa against the injury caused by TNBS, through the combination of antioxidant and anti-inflammatory properties, which, together, showed a protective activity of the indole alkaloid Isatin.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: 1) to create a new and reproducible animal model to produce heterotopic ossification (HO) 2) to be able to exactly quantify the amount of HO using a microCT scan and 3) to prove the hypothesis that COX-2 inhibitors are efficacious in the prevention of HO. Methods: We developed a IACUC-approved Lewis rat model, in which the ventral side of the right femur was scraped to mechanically disrupt the periosteum. By clamping the vastus intermedius ischemic injury to the muscle was produced to enhance HO. Finally homologous bone marrow from a donor rat was placed on the anterior surface of the femur. Half of the study group (8 rats) received chow mixed with a COX-2 inhibitor, while the other half received normal chow. After 6 weeks the animals were sacrificed, the femurs removed and imaged by microCT. Grading of HO was based on the thickness of ectopic bone as evaluated in a blinded fashion by 3 independent observers. Results: All animals developed bilateral HO. Rats treated with COX-2 inhibitors developed significantly less ectopic bone than the control group rats. Conclusions: The results suggest that we have created a very reliable, reproducible model to form ectopic bone in rats. Using the microCT we can precisely quantify the amount of HO. We have been able to show that COX-2 inhibitors significantly decrease the amount of HO formation and are thus a good alternative to non-specific NSAIDs with their potential serious side effects on the gastrointestinal tract and on hemo-stastis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT) produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties. DESIGN Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation. RESULTS We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1alpha, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARgamma1/gamma2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus. CONCLUSION Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new fat has acquired in research in relation to adipogenesis and angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is a serious health problem in Latin America. During this parasitic infection, the heart is one of the major organs affected. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. When cells are infected with T. cruzi, they develop an inflammatory response, in which cyclooxygenase-2 (COX-2) catalyses rate-limiting steps in the arachidonic acid pathway. However, how the parasite interaction modulates COX-2 activity is poorly understood. In this study, the H9c2 cell line was used as our model and we investigated cellular and biochemical aspects during the initial 48 h of parasitic infection. Oscillatory activity of COX-2 was observed, which correlated with the control of the pro-inflammatory environment in infected cells. Interestingly, subcellular trafficking was also verified, correlated with the control of Cox-2 mRNA or the activated COX-2 protein in cells, which is directly connected with the assemble of stress granules structures. Our collective findings suggest that in the very early stage of the T. cruzi-host cell interaction, the parasite is able to modulate the cellular metabolism in order to survives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer (PCa) is a potentially curable disease when diagnosed in early stages and subsequently treated with radical prostatectomy (RP). However, a significant proportion of patients tend to relapse early, with the emergence of biochemical failure (BF) as an established precursor of progression to metastatic disease. Several candidate molecular markers have been studied in an effort to enhance the accuracy of existing predictive tools regarding the risk of BF after RP. We studied the immunohistochemical expression of p53, cyclooxygenase-2 (COX-2) and cyclin D1 in a cohort of 70 patients that underwent RP for early stage, hormone naïve PCa, with the aim of prospectively identifying any possible interrelations as well as correlations with known prognostic parameters such as Gleason score, pathological stage and time to prostate-specific antigen (PSA) relapse. We observed a significant (p201;=201;0.003) prognostic role of p53, with high protein expression correlating with shorter time to BF (TTBF) in univariate analysis. Both p53 and COX-2 expression were directly associated with cyclin D1 expression (p201;=201;0.055 and p201;=201;0.050 respectively). High p53 expression was also found to be an independent prognostic factor (p201;=201;0.023). Based on previous data and results provided by this study, p53 expression exerts an independent negative prognostic role in localized prostate cancer and could therefore be evaluated as a useful new molecular marker to be added in the set of known prognostic indicators of the disease. With respect to COX-2 and cyclin D1, further studies are required to elucidate their role in early prediction of PCa relapse after RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cx40-deficient mice (Cx40-/-) are hypertensive due to increased renin secretion. We evaluated the renal expression of neuronal nitric oxide synthase (nNOS) and cyclooxygenases COX-1 and COX-2, three macula densa enzymes. The levels of nNOS were increased in kidneys of Cx40-/- mice, as well as in those of wild-type (WT) mice subjected to the two-kidney one-clip model of hypertension. In contrast, the levels of COX-2 expression were only increased in the hypoperfused kidney of Cx40-/- mice. Treatment with indomethacin lowered blood pressure and renin mRNA in Cx40-/- mice without affecting renin levels, indicating that changes in COX-2 do not cause the altered secretion of renin. Suppression of NOS activity by N(G)-nitro-L-arginine methyl ester (L-NAME) decreased renin levels in Cx40-/- animals, indicating that NO regulates renin expression in the absence of Cx40. Treatment with candesartan normalized blood pressure in Cx40-/- mice, and decreased the levels of both COX-2 and nNOS. After a treatment combining candesartan and L-NAME, the blood pressure of Cx40-/- mice was higher than that of WT mice, showing that NO may counterbalance the vasoconstrictor effects of angiotensin II in Cx40-/- mice. These data document that renal COX-2 and nNOS are differentially regulated due to the elevation of renin-dependent blood pressure in mice lacking Cx40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human inhibitor NF-κB kinase 2 (hIKK-2) is the primary component responsible for activating NF-κB in response to various inflammatory stimuli. Thus, synthetic ATP-competitive inhibitors for hIKK-2 have been developed as anti-inflammatory compounds. We recently reported a virtual screening protocol (doi:10.1371/journal.pone.0016903) that is able to identify hIKK-2 inhibitors that are not structurally related to any known molecule that inhibits hIKK-2 and that have never been reported to have anti-inflammatory activity. In this study, a stricter version of this protocol was applied to an in-house database of 29,779 natural products annotated with their natural source. The search identified 274 molecules (isolated from 453 different natural extracts) predicted to inhibit hIKK-2. An exhaustive bibliographic search revealed that anti-inflammatory activity has been previously described for: (a) 36 out of these 453 extracts; and (b) 17 out of 30 virtual screening hits present in these 36 extracts. Only one of the remaining 13 hit molecules in these extracts shows chemical similarity with known synthetic hIKK-2 inhibitors. Therefore, it is plausible that a significant portion of the remaining 12 hit molecules are lead-hopping candidates for the development of new hIKK-2 inhibitors.