382 resultados para Cyber
Resumo:
The article introduces a novel platform for conducting controlled and risk-free driving and traveling behavior studies, called Cyber-Physical System Simulator (CPSS). The key features of CPSS are: (1) simulation of multiuser immersive driving in a threedimensional (3D) virtual environment; (2) integration of traffic and communication simulators with human driving based on dedicated middleware; and (3) accessibility of multiuser driving simulator on popular software and hardware platforms. This combination of features allows us to easily collect large-scale data on interesting phenomena regarding the interaction between multiple user drivers, which is not possible with current single-user driving simulators. The core original contribution of this article is threefold: (1) we introduce a multiuser driving simulator based on DiVE, our original massively multiuser networked 3D virtual environment; (2) we introduce OpenV2X, a middleware for simulating vehicle-to-vehicle and vehicle to infrastructure communication; and (3) we present two experiments based on our CPSS platform. The first experiment investigates the “rubbernecking” phenomenon, where a platoon of four user drivers experiences an accident in the oncoming direction of traffic. Second, we report on a pilot study about the effectiveness of a Cooperative Intelligent Transport Systems advisory system.
Resumo:
This paper provides an overview of ‘lessons learned’ from the author’s decade long involvement in online teaching and learning, including eight years in the development, implementation, teaching and administration of a wholly online Master of Arts in Applied Linguistics coursework degree program, which attracted several hundred students annually from around the world, and has won awards for innovation, including being identified as a ‘flagship’ program during an external review of the university.
Resumo:
In the developing digital economy, the notion of traditional attack on enterprises of national significance or interest has transcended into different modes of electronic attack, surpassing accepted traditional forms of physical attack upon a target. The terrorist attacks that took place in the United States on September 11, 2001 demonstrated the physical devastation that could occur if any nation were the target of a large-scale terrorist attack. Therefore, there is a need to protect criticalnational infrastructure and critical information infrastructure. In particular,this protection is crucial for the proper functioning of a modern society and for a government to fulfill one of its most important prerogatives – namely, the protection of its people. Computer networks have many benefits that governments, corporations, and individuals alike take advantage of in order to promote and perform their duties and roles. Today, there is almost complete dependence on private sector telecommunication infrastructures and the associated computer hardware and software systems.1 These infrastructures and systems even support government and defense activity.2 This Article discusses possible attacks on critical information infrastructures and the government reactions to these attacks.
Resumo:
Purpose Ethnographic studies of cyber attacks typically aim to explain a particular profile of attackers in qualitative terms. The purpose of this paper is to formalise some of the approaches to build a Cyber Attacker Model Profile (CAMP) that can be used to characterise and predict cyber attacks. Design/methodology/approach The paper builds a model using social and economic independent or predictive variables from several eastern European countries and benchmarks indicators of cybercrime within the Australian financial services system. Findings The paper found a very strong link between perceived corruption and GDP in two distinct groups of countries – corruption in Russia was closely linked to the GDP of Belarus, Moldova and Russia, while corruption in Lithuania was linked to GDP in Estonia, Latvia, Lithuania and Ukraine. At the same time corruption in Russia and Ukraine were also closely linked. These results support previous research that indicates a strong link between been legitimate economy and the black economy in many countries of Eastern Europe and the Baltic states. The results of the regression analysis suggest that a highly skilled workforce which is mobile and working in an environment of high perceived corruption in the target countries is related to increases in cybercrime even within Australia. It is important to note that the data used for the dependent and independent variables were gathered over a seven year time period, which included large economic shocks such as the global financial crisis. Originality/value This is the first paper to use a modelling approach to directly show the relationship between various social, economic and demographic factors in the Baltic states and Eastern Europe, and the level of card skimming and card not present fraud in Australia.
Resumo:
This research studied the prevalence and impact of workplace cyberbullying as perceived by public servants working in government organisations across Australia. Using Social Information Processing theory, this research found employees reported task- and person-related cyberbullying that was associated with increased workplace stress, diminished job satisfaction and performance, and reduced confidence in their organisations' anti-bullying intervention and protection strategies. Furthermore, workplace cyberbullying can create a concealed, online work culture that undermines employee and organisational productivity. These results are significant for employers' duty-of-care obligations, and represent a cogent argument for improved workplace cultures in support to Australia's future organisational and economic performance.
Resumo:
Network data packet capture and replay capabilities are basic requirements for forensic analysis of faults and security-related anomalies, as well as for testing and development. Cyber-physical networks, in which data packets are used to monitor and control physical devices, must operate within strict timing constraints, in order to match the hardware devices' characteristics. Standard network monitoring tools are unsuitable for such systems because they cannot guarantee to capture all data packets, may introduce their own traffic into the network, and cannot reliably reproduce the original timing of data packets. Here we present a high-speed network forensics tool specifically designed for capturing and replaying data traffic in Supervisory Control and Data Acquisition systems. Unlike general-purpose "packet capture" tools it does not affect the observed network's data traffic and guarantees that the original packet ordering is preserved. Most importantly, it allows replay of network traffic precisely matching its original timing. The tool was implemented by developing novel user interface and back-end software for a special-purpose network interface card. Experimental results show a clear improvement in data capture and replay capabilities over standard network monitoring methods and general-purpose forensics solutions.
Resumo:
In this paper we present the design of ``e-SURAKSHAK,'' a novel cyber-physical health care management system of Wireless Embedded Internet Devices (WEIDs) that sense vital health parameters. The system is capable of sensing body temperature, heart rate, oxygen saturation level and also allows noninvasive blood pressure (NIBP) measurement. End to end internet connectivity is provided by using 6LoWPAN based wireless network that uses the 802.15.4 radio. A service oriented architecture (SOA) 1] is implemented to extract meaningful information and present it in an easy-to-understand form to the end-user instead of raw data made available by sensors. A central electronic database and health care management software are developed. Vital health parameters are measured and stored periodically in the database. Further, support for real-time measurement of health parameters is provided through a web based GUI. The system has been implemented completely and demonstrated with multiple users and multiple WEIDs.
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Taking the good with the bad: Applying Klein's work to further our understandings of cyber-cheating.
Resumo:
This report circumambulates around the environmental issue, examining mobilizations in favour of public access to the seafront and protest events against the recent devastating forest fires. By framing this discussion within existing scholarly contributions on related dimensions of the environmental issue (environmental consciousness, grassroots environmental contestation) in Southern Europe in general and Greece in particular, it suggests that the environmental mobilization dynamic in Greece has been infused with a new, global, mobilizing resource that offers new avenues to evaluate the potency of Greek civil society. Finally, the article discusses the results of the 2007 national elections and ponders the chances of political ecology becoming a permanent feature of Greek parliamentary politics.