921 resultados para Cutting speeds
Resumo:
The technological expansion and market manufactured wood as wood paneling makes the research of processes involving this material are increasingly necessary . The present study examines the milling process MDF - fiberboard with average density endmill with helical teeth , with the analysis of the surface finish by evaluating the surface roughness ( Ra) and analysis of the power consumption . We analyzed three types of cuts in milling : concordant , discordant , and cut top . We used 5 rpm (6000 , 8000 , 10000 , 12000 and 14000 RPM) , establishing five-speed cutting, 301 , 402 ,502, 603 and 703 m / min respectively. Five forward speeds and 4, 6, 8, 10 and 12 m / min. Each condition was repeated six times , totaling 180 tests. The results of roughness were obtained from rugosimeter data and the power consumption were obtained by Hall-effect sensor . These results were statistically analyzed using analysis of variance and Tukey test . Finally it was concluded that there are few significant differences between the results themselves vary roughness when cutting speeds and feed and no major differences in power consumption . The best surface quality and lower power consumption were for cutting speed of 703 m / min . To varying forward speed , the speed of 4 m / min showed better surface quality and lower power consumption
Resumo:
The machining of super alloys resistant to high temperatures such as nickel alloys, inconel 718 specifically, is a very difficult job to obtain improvements in the process, due to the difficulty of machining at high cutting speeds, the use of these alloys in industries showed great developments in recent years, its application in aeronautical industry spread being used in vane turbo, compressor parts, props and set elements. The automotive, chemical, medical and others also took advantage of the great features of inconel 718 and has used the material. The high temperature resistant alloys have high machining difficulty, a fact that is associated with high cutting forces generated during machining which result in high temperatures. High levels of temperatures can cause deterioration of the cutting edge, with subsequent deformation or breakage, wear most common obtained in machining such materials are flank wear the formation of built-up edge for cutting and notch wear. The experimental part of the work consists in machining of nickel-based alloy Inconel 718 heat treated for hardness, using a tool based ceramic silicon nitride Sandvik (Si3N4) in order to compare the best results obtained in the master's thesis of SANTOS (2010) who used a tool ceramics also the basis of silicon nitride which was developed in the doctoral thesis of SOUZA (2005). Assays were performed on a CNC lathe and was noted for each cutting edge results obtained. Tests were made starting from an initial condition of the tool with cutting speed of 200 m/min, feed 0.5 mm and 0.5 mm depth of cut was reduced cutting speed for the subsequent tests with the same conditions of feed and depth of cut. The tool presented wear instant under two 200 m/min and 100 m/min, premature rupture of 50 m/min and finally cut provided with difficulty... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
In experimental conditions, cutting forces were studied during turning of green alumina billets, including their correlation with surface aspects of the workpiece. The correlation between cutting power and the removal rate are important parameters for defining the design of ceramic products, since inadequate parameters can produce excessive surface damage to the workpiece. This study examined the forces obtained during turning of alumina workpieces with 99.8% purity in their green state, by means of a three-point dynamometer, evaluating the cutting, feed and depth forces, using a cermet tool under constant machining conditions. Variables were compared with the forces, including surface finish, tool wear and temperature during machining. In the study, it was found that the depth of cut had no significant effect on the surface quality, and the cutting speed and feed influencing the finish. However, preliminary tests for selecting the cutting conditions showed that unsuitables cutting speeds and feeds generate severe damage to the workpiece surface. The best condition was 1.00 mm depth of cut, and the forces increasedfor with each pass performed, with the feed force the variable with greatest increases in relation to the cutting and depth forces, and wear of the cutting tool directly influenced the surface finish, generated by the highly abrasive nature of the alumina particles of the green compact. It is emphasized that the alumina in its green state showed high abrasive effect on the cutting tool during the turning process and the surface finishing of the green workpiece had a direct influence on the sintered workpiece.
Resumo:
In 2010, the Brazilian forest sector is represented by about 30,000 companies producing US$ 21 billion annually and account for approximately 5% of the gross domestic product (GDP) in the country. The sanding process is highly demanded in various stages of industrialization of the wood, when there is a need for a better quality surface finishing. The objective of this work was to analyze the influence of cutting speed and sandpaper granulometry on both the surface finishing of pieces of Eucalyptus grandis processed through tubular sanding and on the sanding efforts (force and power of sanding). Four cutting speeds were used (19.5, 22.7, 26 and 28.1 m/s), one advance speed (16 m/min) and three sets of sandpaper (80-100, 80-120 and 100-120) being one for chipping and another for finishing, respectively. A central data acquisition system was set up to capture the variables (cutting power, acoustic emission and vibration) in real time. The cutting force was obtained indirectly, through a frequency inverter. The roughness of the parts was measured by a roughness meter before and after sanding. The highest cutting speed used (28.1 m/s) consumed more power and generated more acoustic emission among the four speeds tested. Regarding the vibration, the lower cutting speed (19.5 m/ s) generated the highest vibration in the sander machine. It is concluded that the range of 100-120 sandpapers resulted in values of average roughness (Ra) lower than the other sets of sandpaper used, as it resulted in better surface finishing.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Machining processes are one of the most important manufacturing processes in the modern world. In these processes, there are many elements which will influence in the final result of the machined part. Among them, the tools are the principal factor of the rising cost, because its global influence on the process. In aeronautical industries, this can be more evidenced due the need to machining several alloys, between them, aluminum alloys. These alloys have to demonstrate a specific surface finishing to be used in aircraft's fuselage. This kind of industry is one of the segments which is still rising in Brazil, and they are looking viable alternatives in the manufacturing processes of materials, due the need to produce more and more parts and equipment, with costs increasingly reduced. The purpose of this project is the development of a ceramic with differentiated properties. The ceramics were developed using a pre-sintering at 1200 °C, with posterior sintering at 1600°C, and subjected to dry turning process on aluminum alloy 6005. The characterizations showed that ceramics presented with toughness on the center of 1700 MPa and on the surface of 1950 MPa, density 98,5 ±0,14. g/cm³. Ceramics were grinded and faceted, according to ISO standard 1832, and subjected to turning tests in a ROMI lathe brand, model GL240M, using cutting speeds of 500, 800 and 1000 m/min with different feed rates. The machining results showed low occurrence of flank wear to all cutting speeds, and better surface finishing average values of Ra = 0,4935 μm and Rt = 8,112 μm. In general, it could be seen that the tool presents important potential to machining 6005 alloy, and that the use of correct parameters can decrease and/or eliminate subsequent processes, providing important reductions in costs related to the machining processes
Resumo:
Machining processes are one of the most important manufacturing processes in the modern world. In these processes, there are many elements which will influence in the final result of the machined part. Among them, the tools are the principal factor of the rising cost, because its global influence on the process. In aeronautical industries, this can be more evidenced due the need to machining several alloys, between them, aluminum alloys. These alloys have to demonstrate a specific surface finishing to be used in aircraft's fuselage. This kind of industry is one of the segments which is still rising in Brazil, and they are looking viable alternatives in the manufacturing processes of materials, due the need to produce more and more parts and equipment, with costs increasingly reduced. The purpose of this project is the development of a ceramic with differentiated properties. The ceramics were developed using a pre-sintering at 1200 °C, with posterior sintering at 1600°C, and subjected to dry turning process on aluminum alloy 6005. The characterizations showed that ceramics presented with toughness on the center of 1700 MPa and on the surface of 1950 MPa, density 98,5 ±0,14. g/cm³. Ceramics were grinded and faceted, according to ISO standard 1832, and subjected to turning tests in a ROMI lathe brand, model GL240M, using cutting speeds of 500, 800 and 1000 m/min with different feed rates. The machining results showed low occurrence of flank wear to all cutting speeds, and better surface finishing average values of Ra = 0,4935 μm and Rt = 8,112 μm. In general, it could be seen that the tool presents important potential to machining 6005 alloy, and that the use of correct parameters can decrease and/or eliminate subsequent processes, providing important reductions in costs related to the machining processes
Resumo:
A review is given of the mechanics of cutting, ranging from the slicing of thin floppy offcuts (where there is negligible elasticity and no permanent deformation of the offcut) to the machining of ductile metals (where there is severe permanent distortion of the offcut/chip). Materials scientists employ the former conditions to determine the fracture toughness of ‘soft’ solids such as biological materials and foodstuffs. In contrast, traditional analyses of metalcutting are based on plasticity and friction only, and do not incorporate toughness. The machining theories are inadequate in a number of ways but a recent paper has shown that when ductile work of fracture is included many, if not all, of the shortcomings are removed. Support for the new analysis is given by examination of FEM simulations of metalcutting which reveal that a ‘separation criterion’ has to be employed at the tool tip. Some consideration shows that the separation criteria are versions of void-initiation-growth-and-coalescence models employed in ductile fracture mechanics. The new analysis shows that cutting forces for ductile materials depend upon the fracture toughness as well as plasticity and friction, and reveals a simple way of determining both toughness and flow stress from cutting experiments. Examples are given for a wide range of materials including metals, polymers and wood, and comparison is made with the same properties independently determined using conventional testpieces. Because cutting can be steady state, a new way is presented for simultaneously measuring toughness and flow stress at controlled speeds and strain rates.
Resumo:
An NIR reflectance sensor, with a large field of view and a fibre-optic connection to a spectrometer for measuring light backscatter at 980 nm, was used to monitor the syneresis process online during cheese-making with the goal of predicting syneresis indices (curd moisture content, yield of whey and fat losses to whey) over a range of curd cutting programmes and stirring speeds. A series of trials were carried out in an 11 L cheese vat using recombined whole milk. A factorial experimental design consisting of three curd stirring speeds and three cutting programmes, was undertaken. Milk was coagulated under constant conditions and the casein gel was cut when the elastic modulus reached 35 Pa. Among the syneresis indices investigated, the most accurate and most parsimonious multivariate model developed was for predicting yield of whey involving three terms, namely light backscatter, milk fat content and cutting intensity (R2 = 0.83, SEy = 6.13 g/100 g), while the best simple model also predicted this syneresis index using the light backscatter alone (R2 = 0.80, SEy = 6.53 g/100 g). In this model the main predictor was the light backscatter response from the NIR light back scatter sensor. The sensor also predicted curd moisture with a similar accuracy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different selection objectives within the Quarter Horse breed led to the formation of groups with distinct skills, including the racing and cutting lines. With a smaller population size in Brazil, but of great economic representativeness, the racing line is characterized by animals that can reach high speeds over short distances and within a short period of time. The cutting line is destined for functional tests, exploring skills such as agility and obedience. Although the athletic performance of horses is likely to be influenced by a large number of genes, few genetic variants have so far been related to this trait and this was done exclusively in Thoroughbreds, including the g.38973231G>A singlenucleotide polymorphism in the PDK4 gene and the g.22684390C>T single-nucleotide polymorphism in the COX4I2 gene. The results of the present study demonstrate the presence of polymorphic PDK4 and COX4I2 genes in Quarter Horses. The analysis of 296 racing animals and 68 cutting animals revealed significant differences in allele and genotype frequencies between the two lines. The same was not observed when these frequencies were compared between extreme racing performance phenotypes. There were also no significant associations between alleles of the two polymorphisms and the speed index. These results suggest that the alleles of the PDK4 and COX4I2 genes, which are related to better racecourse performance in Thoroughbreds, are probably associated with beneficial adaptations in aerobic metabolism and therefore play secondary roles in sprint racing performance in Quarter Horses, which is mainly anaerobic.