952 resultados para Cuticular Hydrocarbons
Resumo:
Males, queens and workers of stingless bees show differences in external morphology, behaviour and roles within a colony. In addition, each individual has a cuticular chemical signature responsible for mutual communication that is essential for maintaining the integrity of the colony. In this paper we characterize the cuticular hydrocarbon composition of newly emerged diploid and haploid males, workers and virgin queens of Melipona quadrifasciata by gas chromatography-mass spectrometry (GC/MS) analysis. This is the first time that the cuticular profile of diploid males in a species of stingless bee has been characterized. We found differences in the cuticular hydrocarbon composition among males, workers and virgin queens, recording both qualitative and quantitative differences among individuals of different phenotypes. However, no compound was found exclusively in diploid males. The cuticular chemical profiles of haploid and diploid males were very similar to those of workers. Moreover, the cuticular lipids of males and workers were significantly different from those of queens. Tricosane, pentacosene-2 and 7-methyl-heptacosane were the compounds responsible for this significant separation. This result correlates with the behavioural and morphological differences among these phenotypes.
Resumo:
We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees.
Resumo:
The ability to discriminate nestmates from non-nestmates in insect societies is essential to protect colonies from conspecific invaders. The acceptance threshold hypothesis predicts that organisms whose recognition systems classify recipients without errors should optimize the balance between acceptance and rejection. In this process, cuticular hydrocarbons play an important role as cues of recognition in social insects. The aims of this study were to determine whether guards exhibit a restrictive level of rejection towards chemically distinct individuals, becoming more permissive during the encounters with either nestmate or non-nestmate individuals bearing chemically similar profiles. The study demonstrates that Melipona asilvai (Hymenoptera: Apidae: Meliponini) guards exhibit a flexible system of nestmate recognition according to the degree of chemical similarity between the incoming forager and its own cuticular hydrocarbons profile. Guards became less restrictive in their acceptance rates when they encounter non-nestmates with highly similar chemical profiles, which they probably mistake for nestmates, hence broadening their acceptance level.
Resumo:
The aim of the present study was to characterize the variation of the chemical profiles among workers in different colonies of the stingless bee Melipona marginata. We used gas chromatography and mass spectrometry (CG-MS) and multivariate analysis of the bees' chemical from three colonies of two localities in southeast Brazil. The results showed that cuticular hydrocarbon profiles clearly separated distinct colonies. We show here the importance of using the chemical analyses for characterization of colony membership, in addition of the traditional techniques of diversity analyses.
Resumo:
[GRAPHICS] The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus are 4,6,8,10,16-penta- and 4,6,8,10,16,18-hexamethyldocosanes, I and 2, respectively. Stereoisomers of 2,4,6,8-tetramethylundecanal of established relative stereochemistry were derived from 2,4,6-trimethylphenol and were then coupled with appropriate methyl-substituted phosphoranes 62 and 25 to furnish alkenes, which on reduction provided diastereomers of I and 2, respectively. Capillary gas chromatography, mass spectrometry, and high resolution C-13 NMR spectroscopy confirmed 1 as either 84a or 84b and 2 as either 15a or 15b. The novelty of these structures and their relative stereochemistry is briefly related to polyketide assembly.
Resumo:
Queens in social insect colonies advertise their presence in the colony to: a) attract workers' attention and care; b) gain acceptance by workers as replacement or supplemental reproductives; c) prevent reproductive development in nestmates. We analyzed the chemical content of whole body surface extracts of adult queens of different developmental and reproductive stages, and of adult workers from monogyne (single colony queen) and polygyne (multiple colony queens) forms of the fire ant Solenopsis invicta. We found that the composition of the most abundant components, venom alkaloids, differed between queens and workers, as well as between reproductive and non-reproductive queens. Additionally, workers of the two forms could be distinguished by alkaloid composition. Finally, sexually mature, non-reproductive queens from polygyne colonies differed in their proportions of cis-piperidine alkaloids, depending on their Gp-9 genotype, although the difference disappeared once they became functional reproductives. Among the unsaturated cuticular hydrocarbons characteristic of queens, there were differences in amounts of alkenes/alkadienes between non-reproductive polygyne queens of different Gp-9 genotypes, between non-reproductive and reproductive queens, and between polygyne and monogyne reproductive queens, with the amounts increasing at a relatively higher rate through reproductive ontogeny in queens bearing the Gp-9 b allele. Given that the genotype-specific piperidine differences reflect differences in rates of reproductive maturation between queens, we speculate that these abundant and unique compounds have been co-opted to serve in fertility signaling, while the cuticular hydrocarbons now play a complementary role in regulation of social organization by signaling queen Gp-9 genotype.
Resumo:
In social insects, cuticular hydrocarbons are involved in species, kin, caste and nestmate recognition. Gas chromatography and mass spectrometry were used to compare the cuticular hydrocarbon composition of workers, males and queens of Melipona bicolor. The cuticular hydrocarbon composition of this species was found to consist mainly of C23, C25:1, C25, C27:1, C27, C29:1 and C29, which are already present in imagoes that have not yet abandoned the brood cell. This composition varied quantitatively and qualitatively between and within the castes and sexes. The newly emerged workers and young queens (virgins) had similar cuticular hydrocarbon profiles, which were different from those of the males. When the females start executing their tasks in the colony, the cuticular hydrocarbon profile differences appear. The workers have less variety, while the queens conserve or increase the number of cuticular hydrocarbon compounds. The queens have more abdominal tegumentary glands than the workers, which apparently are the source of the new cuticular compounds.
Resumo:
Cuticular hydrocarbons play important roles as chemical signatures of individuals, castes, sex and brood. They also can mediate the regulation of egg laying in ants, by informing directly or indirectly the reproductive status of queens. In this study we asked whether cuticular hydrocarbon profiles are correlated with castes and sex of Camponotus textor. Cuticular hydrocarbons were extracted from part of a mature colony (80 workers, 27 major workers, 27 queens, 27 virgin queens and 27 males). Results showed that cuticular hydrocarbons varied quantitatively and qualitatively among the groups and this variation was sufficiently strong to allow separation of castes and genders. We discuss the specificity of some compounds as possible regulatory compounds of worker tasks and reproduction in C. textor.
Resumo:
Insect cuticular hydrocarbons including relatively non-volatile chemicals play important roles in cuticle protection and chemical communication. The conventional procedures for extracting cuticular compounds from insects require toxic solvents, or non-destructive techniques that do not allow storage of subsequent samples, such as the use of SPME fibers. In this study, we describe and tested a non-lethal process for extracting cuticular hydrocarbons with styrene-divinylbenzene copolymers, and illustrate the method with two species of bees and one species of beetle. The results demonstrate that these compounds can be efficiently trapped by ChromosorbA (R) (SUPELCO) and that this method can be used as an alternative to existing methods.
Resumo:
Chemical compounds on the cuticle are a rich source of information used during interactions among social insects. Despite the multitude of studies on these substances and their function in ants, wasps, and honeybees, little is known about this subject in stingless bees (Hymenoptera: Apidae, Meliponini). We studied the chemical composition of the cuticle of the stingless bee, Frieseomelitta varia, by gas chromatography-mass spectrometry (GC-MS), to investigate potential chemical variation among castes, gender, age, and reproductive status. We found differences in the cuticular hydrocarbon composition among workers, males, and queens, recording both qualitative and quantitative differences among individuals of different ages and gender. The cuticle of physogastric queens presented a chemical profile that was distinct from all other groups in the analysis, with high relative abundances of alkenes and alkadienes with 27, 29, and 31 carbon atoms. We discuss the possibility that these compounds signal a queen`s presence to the colony, thereby initiating all vital worker-queen interactions.
Resumo:
Age is a critical determinant of an adult female mosquito's ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector longevity to disease transmission in different ecological contexts. It also limits our ability to evaluate novel disease control strategies that specifically target mosquito longevity. We report the development of a transcriptional profiling approach to determine age of adult female Aedes aegypti under field conditions. We demonstrate that this approach surpasses current cuticular hydrocarbon methods for both accuracy of predicted age as well as the upper limits at which age can be reliably predicted. The method is based on genes that display age-dependent expression in a range of dipteran insects and, as such, is likely to be broadly applicable to other disease vectors.
Resumo:
Age is a critical determinant of the ability of most arthropod vectors to transmit a range of human pathogens. This is due to the fact that most pathogens require a period of extrinsic incubation in the arthropod host before pathogen transmission can occur. This developmental period for the pathogen often comprises a significant proportion of the expected lifespan of the vector. As such, only a small proportion of the population that is oldest contributes to pathogen transmission. Given this, strategies that target vector age would be expected to obtain the most significant reductions in the capacity of a vector population to transmit disease. The recent identification of biological agents that shorten vector lifespan, such as Wolbachia, entomopathogenic fungi and densoviruses, offer new tools for the control of vector-borne diseases. Evaluation of the efficacy of these strategies under field conditions will be possible due to recent advances in insect age-grading techniques. Implementation of all of these strategies will require extensive field evaluation and consideration of the selective pressures that reductions in vector longevity may induce on both vector and pathogen.
Resumo:
If sexual selection is to result in speciation, traits involved in mate choice within species need to be capable of producing sexual isolation between species. We investigated the association between mate choice and sexual isolation using interspecific hybrids between two sibling species, Drosophila serrata and Drosophila birchii. A perfuming experiment demonstrated that olfaction was involved in the sexual isolation between the two species. A quantitative genetic analysis using 30 populations of hybrids between the two species indicated that mating success in hybrid individuals was predominately determined by cuticular hydrocarbons; the average genetic correlation between mating success and cuticular hydrocarbon profile was 0.84, and in some instances exceeded 0.95. Multivariate analysis of the cuticular hydrocarbons of the two species revealed that there were three independent blends of cuticular hydrocarbons that separated three levels of organization: species, sex, and sex within species. The hydrocarbons used by hybrids in mate choice included those that separated the two species, demonstrating that species-specific characters may be used in mate choice within populations. The interspecific reciprocal cross had a major effect on which cuticular hydrocarbons were associated with mating success, indicating that the expression of the cuticular hydrocarbons was strongly sex linked.
Resumo:
Social insects use cuticular lipids for nestmate recognition. These lipids are chiefly hydrocarbons that can be endogenously produced or acquired from the environment. Although these compounds are already described as coming from different sources for different groups of social insects, nothing is known about the source of cuticular hydrocarbons in stingless bees. We used behavioural recognition tests and cuticle chemical investigation to elucidate the role of endogenous and environmentally based cues for nestmate recognition in the stingless bee Frieseomelitta varia. We found that although newly emerged workers present specific cuticle patterns according to their nest origin, these compounds are not used for nestmate recognition, since newly emerged workers are broadly accepted in different colonies. The cerumen used in nest construction played an important role in recognition behaviour. Twenty minutes of contact with foreign cerumen was sufficient to increase the rejection rates of nestmates and separate the groups of workers according to their chemical profile. On the other hand, tests of feeding on a common diet showed no effect on chemical cuticle pattern or recognition behaviour. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.