31 resultados para Cryptophytes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On-deck CO2-Fe-manipulated incubation experiments were conducted using surface seawater collected from the Western Subarctic Gyre of the NW Pacific in the summer of 2008 to elucidate the impacts of ocean acidification and Fe enrichment on the abundance and community composition of phytoplankton and eubacteria in the study area. During the incubation, excluding the initial period, the mean partial pressures of CO2 in non-Fe-added bottles were 230, 419, 843, and 1124 µatm, whereas those in Fe-added treatments were 152, 394, 791, and 1008 µatm. Changes in the abundance and community composition of phytoplankton were estimated using HPLC pigment signatures with the program CHEMTAX and flow cytometry. A DGGE fingerprint technique targeting 16S rRNA gene fragments was also used to estimate changes in eubacterial phylotypes during incubation. The Fe addition induced diatom blooms, and subsequently stimulated the growth of heterotrophic bacteria such as Roseobacter, Phaeobacter, and Alteromonas in the post-bloom phase. In both the Fe-limited and Fe-replete treatments, concentrations of 19'-hexanoyloxyfucoxanthin, a haptophyte marker, and the cell abundance of coccolithophores decreased at higher CO2 levels (750 and 1000 ppm), whereas diatoms exhibited little response to the changes in CO2 availability. The abundances of Synechococcus and small eukaryotic phytoplankton (<10 µm) increased at the higher CO2 levels. DGGE band positions revealed that Methylobacterium of Alphaproteobacteria occurred solely at lower CO2 levels (180 and 380 ppm) during the post-bloom phase. These results suggest that increases in CO2 level could affect not only the community composition of phytoplankton but also that of eubacteria. As these microorganisms play critical roles in the biological carbon pump and microbial loop, our results indicate that the progression of ocean acidification can alter the biogeochemical processes in the study area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of phytoplankton assemblages to hydrographical forcing across the southern Brazilian shelf was studied based on data collected during wintertime (June/2012), complemented with MODIS-Aqua satellite imagery. The in situ data set was comprised by water column structure properties (derived from CTD casts), dissolved inorganic nutrients (ammonium, nitrite, nitrate, phosphate and silicate) and phytoplankton biomass [chlorophyll a (Chl a) concentration] and composition. Phytoplankton assemblages were assessed by both microscopy and HPLC-CHEMTAX approaches. A canonical correspondence analysis associating physical, chemical and phytoplankton composition data at surface evinced a tight coupling between the phytoplankton community and hydrographic conditions, with remarkable environmental gradients across three different domains: the pelagic, outer shelf Tropical Water (TW); the mid shelf domain under influence of Subtropical Shelf Water (STSW); and the inner shelf domain mainly under influence of riverine outflow of the Plata River Plume Water (PPW). Results showed that intrusion of low salinity and nutrient-rich PPW stimulated the phytoplankton growth and diversity within the inner shelf region, with enhanced Chl a levels (>1.3 mg/m**3) and a great abundance of diatoms, ciliates, dinoflagellates, raphidophyceans and cryptophytes. Conversely, other diatoms (e.g. Rhizosolenia clevei), tiny species of prochlorophytes and cyanobacteria and a noticeable contribution of dinoflagellates and other flagellates associated with lower Chl a levels (<0.93 mg/m**3), characterized the TW domain, where low nutrient concentrations and deep upper mixed layer were found. The transitional mid shelf domain showed intermediate levels of both nutrients and Chl a (ranging 1.06-1.59 mg/m**3), and phytoplankton was mainly composed by dinoflagellates, such as Dinophysis spp., and gymnodinioids. Results have shown considerable phytoplankton diversity in winter at that section of the southwestern Atlantic Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 2009 cruise in the Lena delta a first comprehensive set of phytoplankton samples was collected from several areas of the Lena Delta. The aim was to establish a first checklist of phytoplankton and microzooplankton species in the Delta for form the basis for future assessments and to aid in the selection of sites to be used as fixed annual monitoring sites in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studies intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15°C) and pCO2 (560 ppm and 1400 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of COO2 seem to be rather resistant to ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60-8000 m**3/s of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This has already profoundly altered the discharge rates of the Lena River. But the chemistry of the river waters which are discharged into the coastal Laptev Sea have also been hypothesized to undergo considerable compositional changes, e.g. by increasing concentrations of inorganic nutrients such as dissolved organic carbon (DOC) and methane. These physical and chemical changes will also affect the composition of the phytoplankton communities. However, before potential consequences of climate change for coastal arctic phytoplankton communities can be judged, the inherent status of the diversity and food web interactions within the delta have to be established. In 2010, as part of the AWI Lena Delta programme, the phyto- and microzooplankton community in three river channels of the delta (Trofimov, Bykov and Olenek) as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small, shallow and mixed area running from the outflow of Bykov channel in a northerly direction parallel to the shore. Of the five stations in this area, three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects, on the other hand, salinities varied between 5 and 30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes. In contrast, in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work is a first analysis of the phytoplankton community structure in the region where Lena River discharge enters the Laptev Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scale at which algal biodiversity is partitioned across the landscape, and the biophysical processes and biotic interactions which shape these communities in dryland river refugia was studied on two occasions from 30 sites in two Australian dryland rivers. Despite the waterholes studied having characteristically high levels of abiogenic turbidity, a total of 186 planktonic microalgae, 253 benthic diatom and 62 macroalgal species were recorded. The phytoplankton communities were dominated by flagellated cryptophytes, euglenophytes and chlorophytes, the diatom communities by cosmopolitan taxa known to tolerate wide environmental conditions, and the macroalgal communities by filamentous cyanobacteria. All algal communities showed significant differences between catchments and sampling times, with a suite of between 5 and 12 taxa responsible for similar to 50% of the observed change. In general, algal assemblage patterns were poorly correlated with the measured environmental variables. Phytoplankton and diatom assemblage patterns were weakly correlated with several waterhole geomorphic measures, whereas macroalgal assemblage patterns showed some association with variability in ionic concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Deep Convection cruise repeatedly sampled two locations in the North Atlantic, sited in the Iceland and Norwegian Basins, onboard the RV Meteor (19 March - 2 May 2012). Samples were collected from multiple casts of a conductivity-temperature-depth (CTD) - Niskin rosette at each station. Water samples for primary production rates, community structure, chlorophyll a [Chl a], calcite [PIC], particulate organic carbon [POC] and biogenic silicic acid [BSi] were collected from predawn casts from six light depths (55%, 20%, 14%, 7%, 5% and 1% of incident PAR). Additional samples for community structure and ancillary parameters were collected from a second cast. Carbon fixation rates were determined using the 13C stable isotope method. Water samples for diatom and micro zooplankton counts, collected from the predawn casts, were preserved with acidic Lugol's solution (2% final solution) and counted using an inverted light microscope. Water samples for coccolithophore counts were collected onto cellulose nitrate filters and counted using polarising light microscopy. Water samples for Chl a analysis were filtered onto MF300 and polycarbonate filters and extracted in 90% acetone. PIC and BSi samples were filtered onto polycarbonate filters and analysed using an inductively coupled plasma emission optical spectrometer and a SEAL QuAAtro autoanalyser respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton community structure and their physiological response in the vicinity of the Antarctic Polar Front (APF; 44°S to 53°S, centred at 10°E) were investigated as part of the ANT-XXVIII/3 Eddy-Pump cruise conducted in austral summer 2012. Our results show that under iron-limited (< 0.3 µmol/m**3) conditions, high total chlorophyll-a (TChl-a) concentrations (> 0.6 mg/m**3) can be observed at stations with deep mixed layer (> 60 m) across the APF. In contrast, light was excessive at stations with shallower mixed layer and phytoplankton were producing higher amounts of photoprotective pigments, diadinoxanthin (DD) and diatoxanthin (DT), at the expense of TChl-a, resulting in higher ratios of (DD+DT)/ TChl-a. North of the APF, significantly lower silicic acid (Si(OH)4) concentrations (< 2 mmol/m**3) lead to the domination of nanophytoplankton consisting mostly of haptophytes, which produced higher ratios of (DD+DT)/TChl-a under relatively low irradiance conditions. The Si(OH)4 replete (> 5 mmol/m**3) region south of the APF, on the contrary, was dominated by microphytoplankton (diatoms and dinoflagellates) with lower ratios of (DD+DT)/TChl-a, despite having been exposed to higher levels of irradiance. The significant correlation between nanophytoplankton and (DD+DT)/TChl-a indicates that differences in taxon-specific response to light are also influencing TChl-a concentration in the APF during summer. Our results reveal that provided mixing is deep and Si(OH)4 is replete, TChl-a concentrations higher than 0.6 mg/m**3 are achievable in the iron-limited APF waters during summer.