566 resultados para Crittografia Computazionale Generatori Pseudocasuali Dimostrazione Automatica CryptoVerif
Resumo:
The main aim of this thesis is strongly interdisciplinary: it involves and presumes a knowledge on Neurophysiology, to understand the mechanisms that undergo the studied phenomena, a knowledge and experience on Electronics, necessary during the hardware experimental set-up to acquire neuronal data, on Informatics and programming to write the code necessary to control the behaviours of the subjects during experiments and the visual presentation of stimuli. At last, neuronal and statistical models should be well known to help in interpreting data. The project started with an accurate bibliographic research: until now the mechanism of perception of heading (or direction of motion) are still poorly known. The main interest is to understand how the integration of visual information relative to our motion with eye position information happens. To investigate the cortical response to visual stimuli in motion and the integration with eye position, we decided to study an animal model, using Optic Flow expansion and contraction as visual stimuli. In the first chapter of the thesis, the basic aims of the research project are presented, together with the reasons why it’s interesting and important to study perception of motion. Moreover, this chapter describes the methods my research group thought to be more adequate to contribute to scientific community and underlines my personal contribute to the project. The second chapter presents an overview on useful knowledge to follow the main part of the thesis: it starts with a brief introduction on central nervous system, on cortical functions, then it presents more deeply associations areas, which are the main target of our study. Furthermore, it tries to explain why studies on animal models are necessary to understand mechanism at a cellular level, that could not be addressed on any other way. In the second part of the chapter, basics on electrophysiology and cellular communication are presented, together with traditional neuronal data analysis methods. The third chapter is intended to be a helpful resource for future works in the laboratory: it presents the hardware used for experimental sessions, how to control animal behaviour during the experiments by means of C routines and a software, and how to present visual stimuli on a screen. The forth chapter is the main core of the research project and the thesis. In the methods, experimental paradigms, visual stimuli and data analysis are presented. In the results, cellular response of area PEc to visual stimuli in motion combined with different eye positions are shown. In brief, this study led to the identification of different cellular behaviour in relation to focus of expansion (the direction of motion given by the optic flow pattern) and eye position. The originality and importance of the results are pointed out in the conclusions: this is the first study aimed to investigate perception of motion in this particular cortical area. In the last paragraph, a neuronal network model is presented: the aim is simulating cellular pre-saccadic and post-saccadic response of neuron in area PEc, during eye movement tasks. The same data presented in chapter four, are further analysed in chapter fifth. The analysis started from the observation of the neuronal responses during 1s time period in which the visual stimulation was the same. It was clear that cells activities showed oscillations in time, that had been neglected by the previous analysis based on mean firing frequency. Results distinguished two cellular behaviour by their response characteristics: some neurons showed oscillations that changed depending on eye and optic flow position, while others kept the same oscillations characteristics independent of the stimulus. The last chapter discusses the results of the research project, comments the originality and interdisciplinary of the study and proposes some future developments.
Resumo:
“Perdita di fase tra il gruppo riempimento polvere/cronoidi con LVDT ed il gruppo piattello durante la fase di arresto a causa della mancanza imprevista di corrente elettrica”. La perdita della fase tra differenti gruppi può avvenire per due ragioni: 1) a causa della cedevolezza di alcuni elementi della catena cinematica 2) per problemi relativi al software che comanda gli assi elettronici e che è responsabile del movimento coordinato dei vari gruppi. La prima ipotesi è molto improbabile in macchine come l’ADAPTA, dove non sono presenti elementi cinematici con elevata cedevolezza (come ad esempio delle cinghie) essendo i movimenti guidati da camme scanalate (che, contrariamente, sono molto rigide) e/o da camme elettriche (motori Brushless). Il secondo caso invece avviene ogni volta che viene a mancare la corrente elettrica in maniera accidentale (ad esempio a causa di un black-out). La mancanza di energia elettrica impedisce al computer a bordo macchina di continuare a monitorare e controllare il funzionamento dei vari assi elettronici della macchina, che sono comandati da motori brushless, che quindi continuano per inerzia il loro moto fino a fermarsi. Siccome ogni gruppo ha un’inerzia e una velocità/accelerazione istantanea diversa e variabile in funzione della posizione assunta all’interno del proprio ciclo nel momento della mancanza di corrente elettrica, i tempi di arresto risultano differenti, e questo causa la perdita di fase. I gruppi riempimento polvere/cronoidi e spingitori fondelli presentano interferenza meccanica col gruppo piattello per una certa durata del suo ciclo; in questa fase gli elementi entrano nelle boccole porta fondelli delle slitte mobili del piattello. È l’unico caso in tutta la macchina in cui parti meccaniche di gruppi diversi, vanno a “intersecare” i propri spostamenti. La progettazione di macchine che presentano interferenze di questo genere è generalmente sconsigliabile poiché si potrebbe presentare il rischio di uno scontro nel caso avvenga una perdita di fase tra i gruppi. Si sono cercate diverse soluzioni mirate a evitare un urto, derivato dall’interferenza meccanica, in caso di black-out oppure di ridurre il più possibile i danni che questa casualità può portare alla macchina. Il gruppo piattello è definito master rispetto a tutti gli altri gruppi; ha un’inerzia molto piccola e questo fa si che, in caso di black-out, il suo arresto avvenga praticamente istantaneamente, al contrario di ciò che avviene per tutti gli altri gruppi slave dotati di inerzia maggiore. Siccome l’arresto del piattello è istantaneo, il pericolo per tastatori e punzoni sollevatori di urto può avvenire solamente per compenetrazione: se gli elementi sono già all’interno della boccola, e restando fermo il piattello, l’inerzia del gruppo che fa proseguire il moto per alcuni istanti non farebbe altro che portarli fuori dalla boccola, non provocando alcun danno. Non vi è perciò il pericolo di “taglio” di questi elementi da parte del piattello. Perciò l’unica possibilità è che il black-out avvenga in un istante del ciclo dove gli elementi si stanno muovendo per entrare nelle boccole mentre anche il piattello è in rotazione.
Resumo:
Questa tesi si basa su una serie di lavori precedenti, volti ad analizzare la correlazione tra i modelli AUML e le reti di Petri, per riuscire a fornire una metodologia di traduzione dai primi alle seconde. Questa traduzione permetterà di applicare tecniche di model checking alle reti così create, al fine di stabilire le proprietà necessarie al sistema per poter essere realizzato effettivamente. Verrà poi discussa un'implementazione di tale algoritmo sviluppata in tuProlog ed un primo approccio al model checking utilizzando il programma Maude. Con piccole modifiche all'algoritmo utilizzato per la conversione dei diagrammi AUML in reti di Petri, è stato possibile, inoltre, realizzare un sistema di implementazione automatica dei protocolli precedentemente analizzati, verso due piattaforme per la realizzazione di sistemi multiagente: Jason e TuCSoN. Verranno quindi presentate tre implementazioni diverse: la prima per la piattaforma Jason, che utilizza degli agenti BDI per realizzare il protocollo di interazione; la seconda per la piattaforma TuCSoN, che utilizza il modello A&A per rendersi compatibile ad un ambiente distribuito, ma che ricalca la struttura dell'implementazione precedente; la terza ancora per TuCSoN, che sfrutta gli strumenti forniti dalle reazioni ReSpecT per generare degli artefatti in grado di fornire una infrastruttura in grado di garantire la realizzazione del protocollo di interazione agli agenti partecipanti. Infine, verranno discusse le caratteristiche di queste tre differenti implementazioni su un caso di studio reale, analizzandone i punti chiave.
Resumo:
Lo studio del progetto prevede la realizzazione di un carrello da applicare ad un sistema svolgibobina di una macchina incellofanatrice automatica e la scelta degli organi per la sua movimentazione.
Resumo:
L’analisi istologica riveste un ruolo fondamentale per la pianificazione di eventuali terapie mediche o chirurgiche, fornendo diagnosi sulla base dell’analisi di tessuti, o cellule, prelevati con biopsie o durante operazioni. Se fino ad alcuni anni fa l’analisi veniva fatta direttamente al microscopio, la sempre maggiore diffusione di fotocamere digitali accoppiate consente di operare anche su immagini digitali. Il presente lavoro di tesi ha riguardato lo studio e l’implementazione di un opportuno metodo di segmentazione automatica di immagini istopatologiche, avendo come riferimento esclusivamente ciò che viene visivamente percepito dall’operatore. L’obiettivo è stato quello di costituire uno strumento software semplice da utilizzare ed in grado di assistere l’istopatologo nell’identificazione di regioni percettivamente simili, presenti all’interno dell’immagine istologica, al fine di considerarle per una successiva analisi, oppure di escluderle. Il metodo sviluppato permette di analizzare una ampia varietà di immagini istologiche e di classificarne le regioni esclusivamente in base alla percezione visiva e senza sfruttare alcuna conoscenza a priori riguardante il tessuto biologico analizzato. Nella Tesi viene spiegato il procedimento logico seguito per la progettazione e la realizzazione dell’algoritmo, che ha portato all’adozione dello spazio colore Lab come dominio su cu cui calcolare gli istogrammi. Inoltre, si descrive come un metodo di classificazione non supervisionata utilizzi questi istogrammi per pervenire alla segmentazione delle immagini in classi corrispondenti alla percezione visiva dell’utente. Al fine di valutare l’efficacia dell’algoritmo è stato messo a punto un protocollo ed un sistema di validazione, che ha coinvolto 7 utenti, basato su un data set di 39 immagini, che comprendono una ampia varietà di tessuti biologici acquisiti da diversi dispositivi e a diversi ingrandimenti. Gli esperimenti confermano l’efficacia dell’algoritmo nella maggior parte dei casi, mettendo altresì in evidenza quelle tipologie di immagini in cui le prestazioni risultano non pienamente soddisfacenti.