919 resultados para Criptografia de dados (Computação)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
With the increase of stakeholders and consequently increase of amount of nancial transaction the study of news investment strategies in the stock market with data mining techniques has been the target of important researches. It allows that great historical data base to be processed and analysed looking for pattern that can be used to take a decision in investments. With the idea of getting pro t more than the real indexs' gain, we propose a strategy method of transactions using rules built by algorithm classi cation. For that, diary historical data of Ibovespa index and Petrobras stocks are organized and processed to nding the most important attribute that act decisively when taking a investment decision.To test the accuracy of proposed rules, a non real portfolio management is created, showing the decisions' performance over the real index and stocks' performance. Following the proposed rules, the results show that the strategy of investment give me back a high return that Stock market's return. The exclusive characteristics of algorithms maximize the gain inside the analysed time allowing to determine the techniques' return and the number of the days necessary to double the initial investment. The best classi er applied on the time series and its use on the propose investments strategy will demand 104 days to double the initial capital
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2016.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Educação, Programa de Pós-Graduação em Educação, 2016.
Resumo:
A segurança no ambiente de redes de computadores é um elemento essencial para a proteção dos recursos da rede, dos sistemas e das informações. Os mecanismos de segurança normalmente empregados são criptografia de dados, firewalls, mecanismos de controle de acesso e sistemas de detecção de intrusão. Os sistemas de detecção de intrusão têm sido alvo de várias pesquisas, pois é um mecanismo muito importante para monitoração e detecção de eventos suspeitos em um ambiente de redes de computadores. As pesquisas nessa área visam aprimorar os mecanismos de detecção de forma a aumentar a sua eficiência. Este trabalho está focado na área de detecção de anomalias baseada na utilização de métodos estatísticos para identificar desvios de comportamento e controlar o acesso aos recursos da rede. O principal objetivo é criar um mecanismo de controle de usuários da rede, de forma a reconhecer a legitimidade do usuário através de suas ações. O sistema proposto utilizou média e desvio padrão para detecção de desvios no comportamento dos usuários. Os resultados obtidos através da monitoração do comportamento dos usuários e aplicação das medidas estatísticas, permitiram verificar a sua validade para o reconhecimento dos desvios de comportamento dos usuários. Portanto, confirmou-se a hipótese de que estas medidas podem ser utilizadas para determinar a legitimidade de um usuário, bem como detectar anomalias de comportamento. As análises dos resultados de média e desvio padrão permitiram concluir que, além de observar os seus valores estanques, é necessário observar o seu comportamento, ou seja, verificar se os valores de média e desvio crescem ou decrescem. Além da média e do desvio padrão, identificou-se também a necessidade de utilização de outra medida para refletir o quanto não se sabe sobre o comportamento de um usuário. Esta medida é necessária, pois a média e o desvio padrão são calculados com base apenas nas informações conhecidas, ou seja, informações registradas no perfil do usuário. Quando o usuário faz acessos a hosts e serviços desconhecidos, ou seja, não registrados, eles não são representados através destas medidas. Assim sendo, este trabalho propõe a utilização de uma medida denominada de grau de desconhecimento, utilizada para medir quantos acessos diferentes do seu perfil o usuário está realizando. O sistema de detecção de anomalias necessita combinar as medidas acima descritas e decidir se deve tomar uma ação no sistema. Pra este fim, propõe-se a utilização de sistemas de regras de produção e lógica fuzzy, que permitem a análise das medidas resultantes e execução do processo de decisão que irá desencadear uma ação no sistema. O trabalho também discute a integração do sistema de detecção de intrusão proposto à aplicação de gerenciamento SNMP e ao gerenciamento baseado em políticas.
Resumo:
Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico.
Resumo:
O trabalho busca analisar e entender se a aplicação de técnicas de Data mining em processos de aquisição de clientes de cartão de crédito, especificamente os que não possuem uma conta corrente em banco, podem trazer resultados positivos para as empresas que contam com processos ativos de conquista de clientes. Serão exploradas três técnicas de amplo reconhecimento na comunidade acadêmica : Regressão logística, Árvores de decisão, e Redes neurais. Será utilizado como objeto de estudo uma empresa do setor financeiro, especificamente nos seus processos de aquisição de clientes não correntistas para o produto cartão de crédito. Serão mostrados resultados da aplicação dos modelos para algumas campanhas passadas de venda de cartão de crédito não correntistas, para que seja possível verificar se o emprego de modelos estatísticos que discriminem os clientes potenciais mais propensos dos menos propensos à contratação podem se traduzir na obtenção de ganhos financeiros. Esses ganhos podem vir mediante redução dos custos de marketing abordando-se somente os clientes com maiores probabilidades de responderem positivamente à campanha. A fundamentação teórica se dará a partir da introdução dos conceitos do mercado de cartões de crédito, do canal telemarketing, de CRM, e das técnicas de data mining. O trabalho apresentará exemplos práticos de aplicação das técnicas mencionadas verificando os potenciais ganhos financeiros. Os resultados indicam que há grandes oportunidades para o emprego das técnicas de data mining nos processos de aquisição de clientes, possibilitando a racionalização da operação do ponto de vista de custos de aquisição.
Resumo:
Trata da aplicação de ferramentas de Data Mining e do conceito de Data Warehouse à coleta e análise de dados obtidos a partir das ações da Secretaria de Estado da Educação de São Paulo. A variável dependente considerada na análise é o resultado do rendimento das escolas estaduais obtido através das notas de avaliação do SARESP (prova realizada no estado de São Paulo). O data warehouse possui ainda dados operacionais e de ações já realizadas, possibilitando análise de influência nos resultados
Resumo:
O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.
Resumo:
O uso combinado de algoritmos para a descoberta de tópicos em coleções de documentos com técnicas orientadas à visualização da evolução daqueles tópicos no tempo permite a exploração de padrões temáticos em corpora extensos a partir de representações visuais compactas. A pesquisa em apresentação investigou os requisitos de visualização do dado sobre composição temática de documentos obtido através da modelagem de tópicos – o qual é esparso e possui multiatributos – em diferentes níveis de detalhe, através do desenvolvimento de uma técnica de visualização própria e pelo uso de uma biblioteca de código aberto para visualização de dados, de forma comparativa. Sobre o problema estudado de visualização do fluxo de tópicos, observou-se a presença de requisitos de visualização conflitantes para diferentes resoluções dos dados, o que levou à investigação detalhada das formas de manipulação e exibição daqueles. Dessa investigação, a hipótese defendida foi a de que o uso integrado de mais de uma técnica de visualização de acordo com a resolução do dado amplia as possibilidades de exploração do objeto em estudo em relação ao que seria obtido através de apenas uma técnica. A exibição dos limites no uso dessas técnicas de acordo com a resolução de exploração do dado é a principal contribuição desse trabalho, no intuito de dar subsídios ao desenvolvimento de novas aplicações.
Resumo:
No jornalismo, são chamadas suítes as matérias que trazem a sequência de um fato já noticiado. Conforme a imprensa cresce na Internet, podemos ver frequentemente um mesmo fato sendo repetido em portais de notícias dia após dia. Este trabalho visa medir as quantidades de artigos a respeito de um mesmo assunto que tenha iniciado uma suíte, com esta medição acontecendo ao longo dos dias em que ele foi explorado. Os resultados permitiram que fossem encontrados padrões que identifiquem os dias em que os fatos mais relevantes foram noticiados, bem como o tempo em que o assunto foi desenvolvido. Para esta análise, foram escolhidos alguns dos mais importantes fatos que viraram suítes no Brasil ao longo dos últimos anos. As quantidades de artigos são provenientes do maior portal de notícias do país, o G1, e da base de dados do Media Cloud Brasil.