271 resultados para Crete


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinization is a soil threat that adversely affects ecosystem services and diminishes soil functions in many arid and semi-arid regions. Soil salinity management depends on a range of factors, and can be complex expensive and time demanding. Besides taking no action, possible management strategies include amelioration and adaptation measures. The WOCAT Technologies Questionnaire is a standardized methodology for monitoring, evaluating and documenting sustainable land management practices through interaction with the stakeholders. Here we use WOCAT for the systematic analysis and evaluation of soil salinization amelioration measures, for the RECARE project Case Study in Greece, the Timpaki basin, a semi-arid region in south-central Crete where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinization due to irrigation with brackish water. Amelioration technologies that have already been applied in the case study by the stakeholders are examined and classified depending on the function they promote and/or improve. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements. Preliminary results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity such as composting, mulching, rain water harvesting and seed biopriming are preferred by the stakeholders. Further work will include result validation using qualitative approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil salinity management can be complex, expensive, and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we apply the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation and selection of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE (Preventing and Remediating degradation of soils in Europe through Land Care) project case study of Timpaki, a semiarid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost, and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rainwater harvesting is the optimal solution for direct soil salinity mitigation, as it addresses a wider range of ecosystem and human well-being benefits. Nevertheless, this merit is offset by poor financial motivation making agronomic measures more attractive to users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the along strike variation of active bedrock fault scarps using long range terrestrial laser scanning (t-LiDAR) data in order to determine the distribution behaviour of scarp height and the subsequently calculate long term throw-rates. Five faults on Cretewhich display spectacular limestone fault scarps have been studied using high resolution digital elevation model (HRDEM) data. We scanned several hundred square metres of the fault system including the footwall, fault scarp and hanging wall of the investigated fault segment. The vertical displacement and the dip of the scarp were extracted every metre along the strike of the detected fault segment based on the processed HRDEM. The scarp variability was analysed by using statistical and morphological methods. The analysis was done in a geographical information system (GIS) environment. Results show a normal distribution for the scanned fault scarp's vertical displacement. Based on these facts, the mean value of height was chosen to define the authentic vertical displacement. Consequently the scarp can be divided into above, below and within the range of mean (within one standard deviation) and quantify the modifications of vertical displacement. Therefore, the fault segment can be subdivided into areas which are influenced by external modification like erosion and sedimentation processes. Moreover, to describe and measure the variability of vertical displacement along strike the fault, the semi-variance was calculated with the variogram method. This method is used to determine how much influence the external processes have had on the vertical displacement. By combining of morphological and statistical results, the fault can be subdivided into areas with high external influences and areas with authentic fault scarps, which have little or no external influences. This subdivision is necessary for long term throw-rate calculations, because without this differentiation the calculated rates would be misleading and the activity of a fault would be incorrectly assessed with significant implications for seismic hazard assessment since fault slip rate data govern the earthquake recurrence. Furthermore, by using this workflow areas with minimal external influences can be determined, not only for throw-rate calculations, but also for determining samples sites for absolute dating techniques such as cosmogenic nuclide dating. The main outcomes of this study include: i) there is no direct correlation between the fault's mean vertical displacement and dip (R² less than 0.31); ii) without subdividing the scanned scarp into areas with differing amounts of external influences, the along strike variability of vertical displacement is ±35%; iii) when the scanned scarp is subdivided the variation of the vertical displacement of the authentic scarp (exposed by earthquakes only) is in a range of ±6% (the varies depending on the fault from 7 to 12%); iv) the calculation of the long term throw-rate (since 13 ka) for four scarps in Crete using the authentic vertical displacement is 0.35 ± 0.04 mm/yr at Kastelli 1, 0.31 ± 0.01 mm/yr at Kastelli 2, 0.85 ± 0.06 mm/yr at the Asomatos fault (Sellia) and 0.55 ± 0.05 mm/yr at the Lastros fault.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern scleractinian corals are classical components of marine shallow warm water ecosystems. Their occurrence and diversity patterns in the geological record have been widely used to infer past climates and environmental conditions. Coral skeletal composition data reflecting the nature of the coral environment are often affected by diagenetic alteration. Ghost structures of annual growth rhythms are, however, often well preserved in the transformed skeleton. We show that these relicts represent a valuable source of information on growth conditions of fossil corals. Annual growth bands were measured in massive hemispherical Porites of late Miocene age from the island of Crete (Greece) that were found in patch reefs and level bottom associations of attached mixed clastic environments as well as isolated carbonate environments. The Miocene corals grew slowly, about 2-4 mm/yr, compatible with present-day Porites from high-latitude reefs. Slow annual growth of the Miocene corals is in good agreement with the position of Crete at the margin of the Miocene reef belt. Within a given time slice, extension rates were lowest in level bottom environments and highest in attached inshore reef systems. Because sea surface temperatures (SSTs) can be expected to be uniform within a time slice, spatial variations in extension rates must reflect local variations in light levels (low in the level bottom communities) and nutrients (high in the attached reef systems). During the late Miocene (Tortonian-early Messinian), maximum linear extension rates remained remarkably constant within seven chronostratigraphic units, and if the relationship of SSTs and annual growth rates observed for modern massive Indo-Pacific Porites spp. applies to the Neogene, minimum (winter) SSTs were 20°-21°C. Although our paleoclimatic record has a low resolution, it fits the trends revealed by global data sets. In the near future we expect this new and easy to use Porites thermometer to add important new information to our understanding of Neogene climate.