930 resultados para Crayfish Neuromuscular-junction
Resumo:
The loss of skeletal muscle mass is believed to be the dominant reason for reduced strength in aging humans. The purpose of this investigation was to gain some information as to why skeletal muscles lose mass as we age. Since nervous system innervation is essential for skeletal muscle fiber viability, incomplete regional reinnervation during normal synaptic junction turnover has been hypothesized to result in selective muscle fiber loss. Examined here was the age-related association in skeletal muscle between atrophy and the expression of mRNAs encoding the γ- and ϵ-subunits of the nicotinic acetylcholine receptor, myogenin, and muscle specific receptor kinase (MuSK). Gastrocnemius and biceps brachii muscles were collected from young (2 month), adult (18 month), and old (31 month) Fischer 344 cross brown Norway F 1 male rats. In the gastrocnemius, muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels. In contrast, the biceps brachii muscle in the same animals exhibited neither atrophy nor a change in acetylcholine receptor γ-subunit, myogenin, or MuSK mRNA levels. Expression of the acetylcholine receptor ϵ-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Since acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels are upregulated in surgically denervated skeletal muscles of young rats while expression of the acetylcholine receptor ϵ-subunit does not change, the findings of the current investigation suggest that a select fiber population within atrophied skeletal muscles of old rats may be in a denervated-like state. I speculate that increases in γ-subunit, myogenin, and MuSK mRNA levels in atrophied muscles of old rats are compensatory responses to nerve terminal retraction. Indeed, a prolongation of denervation in these muscle fibers would subsequently result in their atrophy and death, ultimately leading to a decline in the number of force generating elements present in the muscle. ^
Resumo:
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Resumo:
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca2+-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP−/− mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction ∼10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.
Activity-Regulated microRNAs: Modulators of Synaptic Growth at the Drosophila Neuromuscular Junction
Resumo:
It is well established that long-term changes in synaptic structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing body of evidence supports the involvement of the microRNA (miRNA) pathway in these processes. We have used the Drosophila neuromuscular junction (NMJ) as a model synapse to characterize activity-regulated miRNAs and their important mRNA targets. Here, we have identified five neuronal miRNAs (miRs-1, -8, -289, -314, and -958) that are significantly downregulated in response to neuronal activity. Furthermore we have discovered that neuronal misexpression of three of these miRNAs (miR-8, -289, and -958) is capable of suppressing new synaptic growth in response to activity suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Putative targets of the activity-regulated miRNAs-8 and -289 are significantly enriched in clusters mapping to functional processes including axon development, pathfinding, and axon growth. We demonstrate that activity-regulated miR-8 regulates the 3'UTR of wingless, a presynaptic regulatory protein involved in the process of activity-dependent axon terminal growth. Additionally, we show that the 3'UTR of the protein tyrosine phosophatase leukocyte antengen related (lar), a protein required for axon guidance and synaptic growth, is regulated by activity-regulated miRNAs-8, -289, and -958 in vitro. Both wg and lar were identified as relevant putative targets for co-regulation based through our functional cluster analysis. One putative target of miR-289 is the Ca2+/calmodulin-dependent protein kinase II (CamKII). While CamKII is not predicted as a target for co-regulation by multiple activity-regulated miRNAs we identified it as an especially pertinent target for analysis in our system for two reasons. First, CamKII has an extremely well characterized role in postsynaptic plasticity, but its presynaptic role is less well characterized and bears further analysis. Second, local translation of CamKII mRNA is regulated in part by the miRNA pathway in an activity-dependent manner in dendrites. We find that the CamKII 3'UTR is regulated by miR-289 in-vitro and this regulation is alleviated by mutating the `seed region' of the miR-289 binding site within the CamKII 3'UTR. Furthermore, we demonstrate a requirement for local translation of CamKII in motoneurons in the process of activity-regulated axon terminal growth.
Resumo:
The effects of organophosphorus compounds which form a rapidly-ageing complex with acetylcholinesterase (AChE) (e.g. pinacolyl S-(2- trimethylaminoethyl)methylphosphonothioate (BOS)) and hence exert a persistent anticholinesterase (anti-ChE) action have been compared with other compounds with a shorter time course of inhibition (e.g. ecothiopate iodide (ECO)). Although the inhibition of AChE produced by BOS lasted longer than that seen with ECO, the time course of the myopathy appeared very similar. BOS also possessed a number of properties which have been seen with other anti-ChEs. BOS and ECO produced significant increases in neuromuscular "jitter" 5 days after injection, not only in the diaphragm but also in the soleus and extensor digitorum longus muscles. Increases in "jitter" produced by ECO could be prevented by pyridostigmine prophylaxis or rapid treatment with pyridine-2- aldoxime methiodide. Some protection from the BOS-induced increases in "jitter" could be gained by repeated treatment with pyridine-2-aldoxime methiodide, an effect which could not be accounted for simply by enzyme reactivation. From experiments performed in Rej 129 mice it was determined that increases in "jitter", although demonstrated in some dystrophic muscles, could not be used as an early diagnostic tool. Because sequalae of inhibition were present some time after intoxication, by which time AChE appeared biochemically normal, experiments were performed to investigate inactivation of physiologically important AChE. The time course of extracellular MEPPs was utilised as an indicator of physiologically important AChE and compared with the AChE activity measured by the technique of Ellman et al. (1961). It was concluded that the degree of persistence of anti-ChE action was unimportant for the induction of myopathy with a time course of 3-24 hours, but had some importance in events of longer duration.
Resumo:
Current knowledge of the long-term, low dose effects of carbamate (CB) anti-cholinesterases on skeletal muscle or on the metabolism and regulation of the molecular forms of acetylcholinesterase (AChE) is limited. This is largely due to the reversible nature of these inhibitors and the subtle effects they induce which has generally made their study difficult and preliminary investigations were conducted to determine suitable study methods. A sequential extraction technique was used to rapidly analyse AChE molecular form activity at the mouse neuromuscular junction and also in peripheral parts of muscle fibres. AChE in the synaptic cleft involved in the termination of cholinergic transmission was successfully assessed by the assay method and by an alternative method using a correlation equation which represented the relationship between synaptic AChE and the prolongation of extra-cellular miniature endplate potentials. It was found that inhibition after in vivo Carbamate (CB) dosing could not be maintained during tissue analysis because CB-inhibited enzyme complexes decarbamoylated vary rapidly and could not be prevented even when maintained on ice. The methods employed did not therefore give a measure of inhibition but presented a profile of metabolic responses to continual, low dose CB treatment. Repetitive and continual infusion with low doses of the CBs: pyridostigmine and physostigmine induced a variety of effects on mouse skeletal muscle. Both compounds induced a mild myopathy in the mouse diaphragm during continual infusion which was characterised by endplate deformation without necrosis; such deformation persisted on termination of treatment but had recovered slightly 14 days later. Endplate and non-endplate AChE molecular forms displayed selective responses to CB treatment. During treatment endplate AChE was reduced whereas non-endplate AChE was largely unaffected, and after treatment, endplate AChE recovered, whereas non-endplate AChE was up-regulated. The mechanisms by which these responses become manifest are unclear but may be due to CB-induced effects on nerve-mediated muscle activity, neurotrophic factors or morphological and physiological changes which arise at the neuromuscular junction. It was concluded that, as well as inhibiting AChE, CBs also influence the metabolism and regulation of the enzyme and induce persistent endplate deformation; possible detrimental effects of long-term, low-dose determination requires further investigation.
Resumo:
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA-and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation: (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase, These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.
Resumo:
The local anesthetic effects on neuromuscular junction and its influence on blockade produced by nondepolarizing neuromuscular blockers are still under-investigated; however, this interaction has been described in experimental studies and in humans. The aim of this study was to evaluate in vitro the interaction between ropivacaine and pancuronium, the influence on transmission and neuromuscular blockade, and the effectiveness of neostigmine and 4-aminopyridine to reverse the blockade. Rats were divided into groups (n=5) according to the study drug: ropivacaine (5μgmL(-1)); pancuronium (2μg.mL(-1)); ropivacaine+pancuronium. Neostigmine and 4-aminopyridine were used at concentrations of 2μgmL(-1) and 20μgmL(-1), respectively. The effects of ropivacaine on membrane potential and miniature end-plate potential, the amplitude of diaphragm responses before and 60minutes after the addition of ropivacaine (degree of neuromuscular blockade with pancuronium and with the association of pancuronium-ropivacaine), and the effectiveness of neostigmine and 4-aminopyridine on neuromuscular block reversal were evaluated. Ropivacaine did not alter the amplitude of muscle response (the membrane potential), but decreased the frequency and amplitude of the miniature end-plate potential. Pancuronium blockade was potentiated by ropivacaine, and partially and fully reversed by neostigmine and 4-aminopyridine, respectively. Ropivacaine increased the neuromuscular block produced by pancuronium. The complete antagonism with 4-aminopyridine suggests presynaptic action of ropivacaine.
Resumo:
1. Tiger snake antivenom, raised against Notechis scutatus venom, is indicated not only for the treatment of envenomation by this snake, but also that of the copperhead (Austrelaps superbus ) and Stephen's banded snake (Hoplocephalus stephensi ). The present study compared the neuromuscular pharmacology of venom from these snakes and the in vitro efficacy of tiger snake antivenom. 2. In chick biventer cervicis muscle and mouse phrenic nerve diaphragm preparations, all venoms (3-10 mug/mL) produced inhibition of indirect twitches. In the biventer muscle, venoms (10 mug/mL) inhibited responses to acetylcholine (1 mmol/L) and carbachol (20 mumol/L), but not KCl (40 mmol/L). The prior (10 min) administration of 1 unit/mL antivenom markedly attenuated the neurotoxic effects of A. superbus and N. scutatus venoms (10 mug/mL), but was less effective against H. stephensi venom (10 mug/mL); 5 units/mL antivenom attenuated the neurotoxic activity of all venoms. 3. Administration of 5 units/mL antivenom at t(90) partially reversed, over a period of 3 h, the inhibition of twitches produced by N. scutatus (10 mug/mL; 41% recovery), A. superbus (10 mug/mL; 25% recovery) and H. stephensi (10 mug/mL; 50% recovery) venoms. All venoms (10-100 mug/mL) also displayed signs of in vitro myotoxicity. 4. The results of the present study indicate that all three venoms contain neurotoxic activity that is effectively attenuated by tiger snake antivenom.
Resumo:
Neuromuscular blocking agents (NMBAs) have been widely used to control patients who need to be immobilized for some kind of medical intervention, such as an invasive procedure or synchronism with mechanical ventilation. The purpose of this monograph is to review the pharmacology of the NMBAs, to compare the main differences between the neuromuscular junction in neonates, infants, toddlers and adults, and moreover to discuss their indications in critically ill pediatric patients. Continuous improvement of knowledge about NMBAs pharmacology, adverse effects, and the many other remaining unanswered questions about neuromuscular junction and neuromuscular blockade in children is essential for the correct use of these drugs. Therefore, the indication of these agents in pediatrics is determined with extreme judiciousness. Computorized (Medline 1990-2000) and active search of articles were the mechanisms used in this review.
Resumo:
Myotonic dystrophy Type 1 (DM-1) is caused by abnormal expansion of a (CTG) repeat located in the DM protein kinase gene. Respiratory problems have long been recognized to be a major feature of this disorder. Because respiratory failure can be associated with dysfunction of phrenic nerves and diaphragm muscle, we examined the diaphragm and respiratory neural network in transgenic mice carrying the human genomic DM-1 region with expanded repeats of more than 300 CTG, a valid model of the human disease. Morphologic and morphometric analyses revealed distal denervation of diaphragm neuromuscular junctions in DM-1 transgenic mice indicated by a decrease in the size and shape complexity of end-plates and a reduction in the concentration of acetyl choline receptors on the postsynaptic membrane. More importantly, there was a significant reduction in numbers of unmyelinated, but not of myelinated, fibers in DM-1 phrenic nerves; no morphologic alternations of the nerves or loss of neuronal cells were detected in medullary respiratory centers or cervical phrenic motor neurons. Because neuromuscular junctions are involved in action potential transmission and the afferent phrenic unmyelinated fibers control the inspiratory activity, our results suggest that the respiratory impairment associated with DM-1 may be partially due to pathologic alterations in neuromuscular junctions and phrenic nerves.
Resumo:
The purpose of this study was to determine the efficacy of a programme of strength-stamina exercises during haemodialysis, in improving muscular strength, quality of life and functional capacity to carry out everyday activities. A quantitative, experimental pre-test and post-test study was carried out. A programme of strength-stamina exercises in combination with neuromuscular electrostimulation was applied to 10 patients undergoing haemodialysis. These were three simple exercises adapted to the position in which haemodialysis was carried out. All the patients showed a significant improvement in strength, measured using functional tests to carry out everyday activities: walking (6-MWT) and sit-to-stand tests (10-STS). These tests were measured before and after the training programme. They also showed an improvement in the physical dimension of the quality of life measured using the specific questionnaire for renal patients, KDQOL-SFTM.
Resumo:
The alteration in neuromuscular function of knee extensor muscles was characterised after a squash match in 10 trained players. Maximal voluntary contraction (MVC) and surface EMG activity of vastus lateralis (VL) and vastus medialis (VM) muscles were measured before and immediately after a 1-h squash match. M-wave and twitch contractile properties were analysed following single stimuli. MVC declined (280.5+/-46.8 vs. 233.6+/-35.4 Nm, -16%; P<0.001) after the exercise and this was accompanied by an impairment of central activation, as attested by decline in voluntary activation (76.7+/-10.4 vs. 71.3+/-9.6%, -7%; P<0.05) and raw EMG activity of the two vastii (-17%; P<0.05), whereas RMS/M decrease was lesser (VL: -5%; NS and VM: -12%; P=0.10). In the fatigued state, no significant changes in M-wave amplitude (VL: -9%; VM: -5%) or duration were observed. Following exercise, the single twitch was characterised by lower peak torque (-20%; P<0.001) as well as shorter half-relaxation time (-13%; P<0.001) and reduced maximal rate of twitch tension development (-23%; P<0.001) and relaxation (-17%; P<0.05). A 1-h squash match play caused peripheral fatigue by impairing excitation-contraction coupling, whereas sarcolemmal excitability seems well preserved. Our results also emphasise the role of central activation failure as a possible mechanism contributing to the torque loss observed in knee extensors. Physical conditioners should consider these effects when defining their training programs for squash players.
Resumo:
Neuromuscular blocking agents (NMBAs) are widely used in clinical anaesthesia and emergency medicine. Main objectives are to facilitate endotracheal intubation and to allow surgery by reducing muscle tone and eliminating sudden movements, which may otherwise lead to trauma and complications. The most commonly used NMBAs are non-depolarizing agents with a medium duration of action, such as rocuronium and cisatracurium. They bind to the acetylcholine receptors in the neuromuscular junction, thus inhibiting the depolarization of the postsynaptic (muscular) membrane, which is a prerequisite for muscle contraction to take place. Previously, it has been assumed that nitrous oxide (N2O), which is commonly used in combination with volatile or intravenous anaesthetics during general anaesthesia, has no effect on NMBAs. Several studies have since claimed that N2O in fact does increase the effect of NMBAs when using bolus administration of the relaxant. The effect of N2O on the infusion requirements of two NMBAs (rocuronium and cisatracurium) with completely different molecular structure and pharmacological properties was assessed. A closed-loop feedback controlled infusion of NMBA with duration of at least 90 minutes at a 90% level of neuromuscular block was used. All patients received total intravenous anaesthesia (TIVA) with propofol and remifentanil. In both studies the study group (n=35) received N2O/Oxygen and the control group (n=35) Air/Oxygen. There were no significant differences in the mean steady state infusion requirements of NMBA (rocuronium in Study I; cisatracurium in Study II) between the groups in either study. In Study III the duration of the unsafe period of recovery after reversal of rocuronium-induced neuromuscular block by using neostigmine or sugammadex as a reversal agent was analyzed. The unsafe period of recovery was defined as the time elapsed from the moment of no clinical (visual) fade in the train-of-four (TOF) sequence until an objectively measured TOF-ratio of 0.90 was achieved. The duration of these periods were 10.3 ± 5.5 and 0.3 ± 0.3 min after neostigmine and sugammadex, respectively (P < 0.001). Study IV investigated the possible effect of reversal of a rocuronium NMB by sugammadex on depth of anaesthesia as indicated by the bispectral index and entropy levels in thirty patients. Sugammadex did not affect the level of anaesthesia as determined by EEG-derived indices of anaesthetic depth such as the bispectral index and entropy.