180 resultados para Crassostrea rivularis
Resumo:
The aim of this study was to assess the contamination of oysters (Crassostrea gigas), harvested in six different regions of the South Bay of Santa Catarina Island, with Coliforms at 45 ºC, Escherichia coli, Vibrio spp., positive coagulase staphylococci, and Salmonella sp. over a period of one year. One hundred eighty oyster samples were collected directly from their culture sites and analyzed. Each sample consisted of a pool of 12 oysters. All of the samples analyzed showed absence of Salmonella, 18 (10%) samples showed presence of Escherichia coli, 15 (8.3%) samples were positive for V. alginolyticus, and Vibriocholerae was detected in 4 samples (2.2%). The counts of positive-coagulase staphylococci varied from <10 to 1.9 x 102 CFU.g-1, whereas the counts of Coliforms at 45 ºC and E. coli ranged from <3 to 1.5 x 102 MPN.g-1 and <3 and 4.3 x 10 MPN.g-1, respectively. Counts of V. parahaemolyticus and V. vulnificus ranged between <3 and 7 MPN.g-1, for both microorganisms. This suggests the need for monitoring these Vibrios contamination in oysters. Based on the results of the microbiological assays, the samples analyzed showed acceptable bacteriological quality, i.e., they were within the parameters established by Brazilian Legislation.
Resumo:
Tesis (Doctor en Ciencias con acentuación en Microbiología) UANL, 2014.
Resumo:
Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25,15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mLL(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill`s catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde. MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mLL(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mLL(-1) diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Oysters (Ostreidae) manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI), revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state) to Santos (São Paulo state), and C. rhizophorae from Fortim (Ceará state) to Florianópolis (Santa Catarina state), although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state). An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship.
Resumo:
O presente estudo analisou o ciclo reprodutivo e estabeleceu a relação dos fatores abióticos com os estádios de desenvolvimento gonadal de Crassostrea gasar criadas no estuário amazônico. Foram coletados mensalmente cerca de 20 ostras no período de agosto de 2009 a dezembro de 2010. Os meses de coleta foram agrupados em quatro períodos sazonais (seco, transicional seco/chuvoso, chuvoso e transicional chuvoso/seco). No local da coleta foram mensurados in situ salinidade, pH, temperatura e oxigênio dissolvido. A gônada foi dissecada e submetida ao procedimento histológico. Um total de 351 animais foram coletados, sendo 190 fêmeas, 161 machos e 2 hermafroditas. Histologicamente machos e fêmeas foram classificados em quatro estádios gonadais: I- imaturo, II - em maturação, III - maturo e IV - desovado (fêmeas) e espermiado (machos). Dentre os fatores abióticos analisados apenas a salinidade e a precipitação pluviométrica apresentaram diferenças estatisticamente significantes durante o estudo. Houve correlação entre esses dois fatores e a maturação gonadal, sugerindo que esses fatores estejam influenciando na reprodução, visto que foram encontrados predominância de indivíduos maturos (III) no período chuvoso e transicional chuvoso/seco (baixa salinidade e alta precipitação pluviométrica). Nos períodos seco e transicional seco/chuvoso (alta salinidade e baixa precipitação) foram encontrados indivíduos nos estágios imaturo (I), em maturação (II) e desovado/espermiado (IV). Por conseguinte, para o cultivo é indicado que a coleta de sementes seja feita nos períodos seco e transicional seco/chuvoso.
Resumo:
Aquaculture of filter-feeding bivalve mollusks involves the fruitful conversion of marine particulate organic matter into premium protein of high nutritive value. Culture performance of bivalves is largely dependent on hydrological conditions and directly affected by e. g. temperature and chlorophyll levels. Accordingly, these parameters may be related with seasonality but also with oceanographic features combined with climate events. Yields of Pacific cupped oyster (Crassostrea gigas) reared at commercial procedures in suspended structures (long-lines) in a sheltered bay in Southern Brazil (Santa Catarina State, 27S 43'; 48 W 30') were evaluated in relation to local environmental conditions: sea surface temperature, chlorophyll a concentration, and associate effects of cold fronts events and El Nino and La Nina periods. Outputs from four consecutive commercial crop years were analyzed (2005/06, 2006/07, 2007/08, 2008/09) in terms of oyster survival and development time during the following grow-out phases of the culture cycle: seed to juvenile, juvenile to adult, adult to marketable. Since culture management and genetics were standardized significant differences verified among crop performance could be mostly related to environmental effects. Time series of temperature and chlorophyll a (remote sensing data) from crop periods displayed significant seasonal and interannual variation. As expected, performance during initial grow-out stages (seed to juvenile) was critical for final crop yield. Temperature was the main factor affecting survival in these initial stages with a trend of negative correlation, though not statistically significant. On the other hand, oyster development rate was significantly and positively affected by chlorophyll a concentration. Chlorophyll a values could be increased by upwelled cold nutrient-rich South Atlantic Central Water (SACW, related to predominant Northern winds) though further dependent on occurrence of Southern winds (cold fronts) to assist seawater penetration into the sheltered farming area. Lower salinity nutrient-rich northward drifted waters from La Plata River discharge may also result in chlorophyll a rise in the farming area. The El Nino period (July 2006 to February 2007) coincided with lower chlorophyll a levels in the farming site that may be related to both decreased number of cold fronts as well as predominance of Northern winds that retain northward spreading of La Plata River discharge waters. In contrast, the La Nina period (August 2007 to June 2008) corresponded to higher chlorophyll a values in the farming area by both upwelling of SACW and penetration of La Plata River discharge water assisted by increased occurrence of Southern winds and cold fronts. The recognition of the potentially changing climate and effects upon the environment will be an important step in planning future development of bivalve aquaculture.
Resumo:
Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.
Resumo:
Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.
Resumo:
Background. Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end of century open ocean pH reductions. Projected and current ocean acidification have wide-ranging effects on many aquatic organisms, however the exact mechanisms of the impacts of ocean acidification on many of these animals remains to be characterized. Methods. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different pCO2 levels for four weeks: 400 µatm (pH 8.0), 800 µatm (pH 7.7), 1000 µatm (pH 7.6), or 2800 µatm (pH 7.3). At the end of 4 weeks a variety of physiological parameters were measured to assess the impacts of ocean acidification: tissue glycogen content and fatty acid profile, shell micromechanical properties, and response to acute heat shock. To determine the effects of ocean acidification on the underlying molecular physiology of oysters and their stress response, some of the oysters from 400 µatm and 2800 µatm were exposed to an additional mechanical stress and shotgun proteomics were done on oysters from high and low pCO2 and from with and without mechanical stress. Results. At the end of the four week exposure period, oysters in all four pCO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated pCO2. Elevated pCO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with pCO2, with numerous processes significantly affected by mechanical stimulation at high versus low pCO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Discussion. Oyster physiology is significantly altered by exposure to elevated pCO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of pCO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.
Resumo:
Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.
Resumo:
Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.