926 resultados para Crash injuries
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Road curves are an important feature of road infrastructure and many serious crashes occur on road curves. In Queensland, the number of fatalities is twice as many on curves as that on straight roads. Therefore, there is a need to reduce drivers’ exposure to crash risk on road curves. Road crashes in Australia and in the Organisation for Economic Co-operation and Development(OECD) have plateaued in the last five years (2004 to 2008) and the road safety community is desperately seeking innovative interventions to reduce the number of crashes. However, designing an innovative and effective intervention may prove to be difficult as it relies on providing theoretical foundation, coherence, understanding, and structure to both the design and validation of the efficiency of the new intervention. Researchers from multiple disciplines have developed various models to determine the contributing factors for crashes on road curves with a view towards reducing the crash rate. However, most of the existing methods are based on statistical analysis of contributing factors described in government crash reports. In order to further explore the contributing factors related to crashes on road curves, this thesis designs a novel method to analyse and validate these contributing factors. The use of crash claim reports from an insurance company is proposed for analysis using data mining techniques. To the best of our knowledge, this is the first attempt to use data mining techniques to analyse crashes on road curves. Text mining technique is employed as the reports consist of thousands of textual descriptions and hence, text mining is able to identify the contributing factors. Besides identifying the contributing factors, limited studies to date have investigated the relationships between these factors, especially for crashes on road curves. Thus, this study proposed the use of the rough set analysis technique to determine these relationships. The results from this analysis are used to assess the effect of these contributing factors on crash severity. The findings obtained through the use of data mining techniques presented in this thesis, have been found to be consistent with existing identified contributing factors. Furthermore, this thesis has identified new contributing factors towards crashes and the relationships between them. A significant pattern related with crash severity is the time of the day where severe road crashes occur more frequently in the evening or night time. Tree collision is another common pattern where crashes that occur in the morning and involves hitting a tree are likely to have a higher crash severity. Another factor that influences crash severity is the age of the driver. Most age groups face a high crash severity except for drivers between 60 and 100 years old, who have the lowest crash severity. The significant relationship identified between contributing factors consists of the time of the crash, the manufactured year of the vehicle, the age of the driver and hitting a tree. Having identified new contributing factors and relationships, a validation process is carried out using a traffic simulator in order to determine their accuracy. The validation process indicates that the results are accurate. This demonstrates that data mining techniques are a powerful tool in road safety research, and can be usefully applied within the Intelligent Transport System (ITS) domain. The research presented in this thesis provides an insight into the complexity of crashes on road curves. The findings of this research have important implications for both practitioners and academics. For road safety practitioners, the results from this research illustrate practical benefits for the design of interventions for road curves that will potentially help in decreasing related injuries and fatalities. For academics, this research opens up a new research methodology to assess crash severity, related to road crashes on curves.
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
Large trucks are involved in a disproportionately small fraction of the total crashes but a disproportionately large fraction of fatal crashes. Large truck crashes often result in significant congestion due to their large physical dimensions and from difficulties in clearing crash scenes. Consequently, preventing large truck crashes is critical to improving highway safety and operations. This study identifies high risk sites (hot spots) for large truck crashes in Arizona and examines potential risk factors related to the design and operation of the high risk sites. High risk sites were identified using both state of the practice methods (accident reduction potential using negative binomial regression with long crash histories) and a newly proposed method using Property Damage Only Equivalents (PDOE). The hot spots identified via the count model generally exhibited low fatalities and major injuries but large minor injuries and PDOs, while the opposite trend was observed using the PDOE methodology. The hot spots based on the count model exhibited large AADTs, whereas those based on the PDOE showed relatively small AADTs but large fractions of trucks and high posted speed limits. Documented site investigations of hot spots revealed numerous potential risk factors, including weaving activities near freeway junctions and ramps, absence of acceleration lanes near on-ramps, small shoulders to accommodate large trucks, narrow lane widths, inadequate signage, and poor lighting conditions within a tunnel.
Resumo:
This paper presents a preliminary crash avoidance framework for heavy equipment control systems. Safe equipment operation is a major concern on construction sites since fatal on-site injuries are an industry-wide problem. The proposed framework has potential for effecting active safety for equipment operation. The framework contains algorithms for spatial modeling, object tracking, and path planning. Beyond generating spatial models in fractions of seconds, these algorithms can successfully track objects in an environment and produce a collision-free 3D motion trajectory for equipment.
Resumo:
Bicycle injuries, particularly those resulting from single bicycle crashes, are underreported in both police and hospital records. Data on cyclist characteristics and crash circumstances are also often lacking. As a result, the ability to develop comprehensive injury prevention policies is hampered. The aim of this study was to examine the incidence, severity, cyclist characteristics, and crash circumstances associated with cycling injuries in a sample of cyclists in Queensland, Australia. A cross-sectional study of Queensland cyclists was conducted in 2009. Respondents (n=2056) completed an online survey about their cycling experiences, including cycling injuries. Logistic regression modelling was used to examine the associations between demographic and cycling behaviour variables with experiencing cycling injuries in the past year, and, separately, with serious cycling injuries requiring a trip to a hospital. Twenty-seven percent of respondents (n=545) reported injuries, and 6% (n=114) reported serious injuries. In multivariable modelling, reporting an injury was more likely for respondents who had cycled <5 years, compared to ≥10 years (p<0.005); cycled for competition (p=0.01); or experienced harassment from motor vehicle occupants (p<0.001). There were no gender differences in injury incidence, and respondents who cycled for transport did not have an increased risk of injury. Reporting a serious injury was more likely for those whose injury involved other road users (p<0.03). Along with environmental and behavioural approaches for reducing collisions and near-collisions with motor vehicles, interventions that improve the design and maintenance of cycling infrastructure, increase cyclists’ skills, and encourage safe cycling behaviours and bicycle maintenance will also be important for reducing the overall incidence of cycling injuries.
Resumo:
The focus of governments on increasing active travel has motivated renewed interest in cycling safety. Bicyclists are up to 20 times more likely to be involved in serious injury crashes than drivers so understanding the relationship among factors in bicyclist crash risk is critically important for identifying effective policy tools, for informing bicycle infrastructure investments, and for identifying high risk bicycling contexts. This study aims to better understand the complex relationships between bicyclist self reported injuries resulting from crashes (e.g. hitting a car) and non-crashes (e.g. spraining an ankle) and perceived risk of cycling as a function of cyclist exposure, rider conspicuity, riding environment, rider risk aversion, and rider ability. Self reported data from 2,500 Queensland cyclists are used to estimate a series of seemingly unrelated regressions to examine the relationships among factors. The major findings suggest that perceived risk does not appear to influence injury rates, nor do injury rates influence perceived risks of cycling. Riders who perceive cycling as risky tend not to be commuters, do not engage in group riding, tend to always wear mandatory helmets and front lights, and lower their perception of risk by increasing days per week of riding and by increasing riding proportion on bicycle paths. Riders who always wear helmets have lower crash injury risk. Increasing the number of days per week riding tends to decrease both crash injury and non crash injury risk (e.g. a sprain). Further work is needed to replicate some of the findings in this study.
Resumo:
The National Road Safety Strategy 2011-2020 outlines plans to reduce the burden of road trauma via improvements and interventions relating to safe roads, safe speeds, safe vehicles, and safe people. It also highlights that a key aspect in achieving these goals is the availability of comprehensive data on the issue. The use of data is essential so that more in-depth epidemiologic studies of risk can be conducted as well as to allow effective evaluation of road safety interventions and programs. Before utilising data to evaluate the efficacy of prevention programs it is important for a systematic evaluation of the quality of underlying data sources to be undertaken to ensure any trends which are identified reflect true estimates rather than spurious data effects. However, there has been little scientific work specifically focused on establishing core data quality characteristics pertinent to the road safety field and limited work undertaken to develop methods for evaluating data sources according to these core characteristics. There are a variety of data sources in which traffic-related incidents and resulting injuries are recorded, which are collected for a variety of defined purposes. These include police reports, transport safety databases, emergency department data, hospital morbidity data and mortality data to name a few. However, as these data are collected for specific purposes, each of these data sources suffers from some limitations when seeking to gain a complete picture of the problem. Limitations of current data sources include: delays in data being available, lack of accurate and/or specific location information, and an underreporting of crashes involving particular road user groups such as cyclists. This paper proposes core data quality characteristics that could be used to systematically assess road crash data sources to provide a standardised approach for evaluating data quality in the road safety field. The potential for data linkage to qualitatively and quantitatively improve the quality and comprehensiveness of road crash data is also discussed.
Resumo:
Introduction: In Singapore, motorcycle crashes account for 50% of traffic fatalities and 53% of injuries. While extensive research efforts have been devoted to improve the motorcycle safety, the relationship between the rider behavior and the crash risk is still not well understood. The objective of this study is to evaluate how behavioral factors influence crash risk and to identify the most vulnerable group of motorcyclists. Methods: To explore the rider behavior, a 61-item questionnaire examining sensation seeking (Zuckerman et al., 1978), impulsiveness (Eysenck et al., 1985), aggressiveness (Buss & Perry, 1992), and risk-taking behavior (Weber et al., 2002) was developed. A total of 240 respondents with at least one year riding experience form the sample that relate behavior to their crash history, traffic penalty awareness, and demographic characteristics. By clustering the crash risk using the medoid portioning algorithm, the log-linear model relating the rider behavior to crash risk was developed. Results and Discussions: Crash-involved motorcyclists scored higher in impulsive sensation seeking, aggression and risk-taking behavior. Aggressive and high risk-taking motorcyclists were respectively 1.30 and 2.21 times more likely to fall under the high crash involvement group while impulsive sensation seeking was not found to be significant. Based on the scores on risk-taking and aggression, the motorcyclists were clustered into four distinct personality combinations namely, extrovert (aggressive, impulsive risk-takers), leader (cautious, aggressive risk-takers), follower (agreeable, ignorant risk-takers), and introvert (self-consciousness, fainthearted risk-takers). “Extrovert” motorcyclists were most prone to crashes, being 3.34 times more likely to involve in crash and 8.29 times more vulnerable than the “introvert”. Mediating factors like demographic characteristics, riding experience, and traffic penalty awareness were found not to be significant in reducing crash risk. Conclusion: The findings of this study will be useful for road safety campaign planners to be more focused in the target group as well as those who employ motorcyclists for their delivery business.
Resumo:
The focus of governments on increasing active travel has motivated renewed interest in cycling safety. Bicyclists are up to 20 times more likely to be involved in serious injury crashes than drivers so understanding the relationship among factors in bicyclist crash risk is critically important for identifying effective policy tools, for informing bicycle infrastructure investments, and for identifying high risk bicycling contexts. This study aims to better understand the complex relationships between bicyclist self reported injuries resulting from crashes (e.g. hitting a car) and non-crashes (e.g. spraining an ankle) and perceived risk of cycling as a function of cyclist exposure, rider conspicuity, riding environment, rider risk aversion, and rider ability. Self reported data from 2,500 Queensland cyclists are used to estimate a series of seemingly unrelated regressions to examine the relationships among factors. The major findings suggest that perceived risk does not appear to influence injury rates, nor do injury rates influence perceived risks of cycling. Riders who perceive cycling as risky tend not to be commuters, do not engage in group riding, tend to always wear mandatory helmets and front lights, and lower their perception of risk by increasing days per week of riding and by increasing riding proportion on bicycle paths. Riders who always wear helmets have lower crash injury risk. Increasing the number of days per week riding tends to decrease both crash injury and non crash injury risk (e.g. a sprain). Further work is needed to replicate some of the findings in this study.
Resumo:
Police reported crash data are the primary source of crash information in most jurisdictions. However, the definition of serious injury within police-reported data is not consistent across jurisdictions and may not be accurate. With the Australian National Road Safety Strategy targeting the reduction of serious injuries, there is a greater need to assess the accuracy of the methods used to identify these injuries. A possible source of more accurate information relating to injury severity is hospital data. While other studies have compared police and hospital data to highlight the under-reporting in police-reported data, little attention has been given to the accuracy of the methods used by police to identify serious injuries. The current study aimed to assess how accurate the identification of serious injuries is in police-reported crash data, by comparing the profiles of transport-related injuries in the Queensland Road Crash Database with an aligned sample of data from the Queensland Hospital Admitted Patients Data Collection. Results showed that, while a similar number of traffic injuries were recorded in both data sets, the profile of these injuries was different based on gender, age, location, and road user. The results suggest that the ‘hospitalisation’ severity category used by police may not reflect true hospitalisations in all cases. Further, it highlights the wide variety of severity levels within hospitalised cases that are not captured by the current police-reported definitions. While a data linkage study is required to confirm these results, they highlight that a reliance on police-reported serious traffic injury data alone could result in inaccurate estimates of the impact and cost of crashes and lead to a misallocation of valuable resources.
Resumo:
The future on-road safety of drivers affected by Whiplash Associated Disorder (WAD), the most common soft-tissue injury suffered in a traffic crash, has not been extensively explored. We obtained an anonymised file of 4280 insurance claimants with WAD and, as controls, 1116 claimants with comparably severe soft-tissue injuries who are considered to be at no increased risk than the general population. Their demographic information, road user type and traffic crash records both prior and subsequent to the traffic incident in which the injury occurred, the index crash, were obtained. Rates of subsequent crash involvement in these two groups were then compared, adjusting for age, sex, road user type and prior crash experience. The risk of a subsequent crash in the WAD group relative to controls was 1.14 (95% confidence interval, 0.87–1.48). To allow for differentially altered driving exposure after index crash we distributed a brief survey asking about changes in driving habits after a traffic crash involving injury via physiotherapy clinics and online through the electronic newsletter of a local motoring organisation. The survey yielded responses from 113 drivers who had experienced WAD in a traffic crash and 53 with other soft tissue injuries. There were no differences on average between the groups in their prior driving levels or their percentage change therein at one, three or six months after injury. There was thus no evidence that drivers with WAD are at any higher safety risk than drivers with other types of relatively minor post-crash soft tissue injury.
Resumo:
Objectives Studies from different parts of the world have indicated that the impact of road traffic incidents disproportionally affects young adults. Few known studies have been forthcoming from Arabian Gulf countries. Within Oman, a high proportion of the population is under the age of 20. Coupled with the drastic increase of motorization in recent years there is a need to understand the state of road safety among young people in Oman. The current research aimed to explore the prevalence and characteristics of road traffic injuries among young drivers aged 17-25 years. Methods Crash data from 2009-2011 was extracted from the Directorate General of Traffic, Royal Oman Police (ROP) database in Oman. The data was analyzed to explore the impact of road crashes on young people (17-25 years), the characteristics of young driver crashes and how these differ from older drivers and to identify key predictors of fatalities in young driver crashes. Results Overall, young people were over-represented in injuries and fatalities within the sample time period. While it is true that many young people in crashes were driving at the time, it was also evident that young people were often a victim in a crash caused by someone else. Thus, to reduce the impact of road crashes on young people, there is a need to generally address road safety within Oman. When young drivers were involved in crashes they were predominantly male. The types of crashes these drivers have can be broadly attributed to risk taking and inexperience. Speeding and night time driving were the key risk factors for fatalities. Conclusion The results highlight the need to address young driver safety in Oman. From these findings, the introduction of a graduated driver licensing system with night time driving restrictions could significantly improve young driver safety.
Resumo:
Alcohol is a major factor in road deaths and serious injuries. In Victoria, between 2008 and 2013, 30% of drivers killed were involved in alcohol-related crashes. From the early 1980s Victoria progressively introduced a series of measures, such as driver licence cancellation and alcohol interlocks, to reduce the level of drink-driving on Victoria's roads. This project tracked drink-driving offenders to measure and understand their re-offence and road trauma involvement levels during and after periods of licensing and driving interventions. The methodology controlled for exposure by aggregating crashes and traffic violations within relevant categories (e.g. licence cancelled/relicensed/relicensing not sought) and calculated as rates 'per thousand person-years'. Inferential statistical techniques were used to compare crash and offence rates between control and treatment groups across three distinct time periods, which coincided with the introduction of new interventions. This paper focuses on the extent to which the Victorian drink-driving measures have been successful in reducing re-offending and road trauma involvement during and after periods of licence interventions. It was found that a licence cancellation/ban is an effective drink-driving countermeasure as it reduced drink-driving offending and drink-driving crashes. Interlocks also had a positive effect on drink-driving offences as they were reduced during the interlock period as well as for the entire intervention period. Possible drink-driving policy implications are briefly discussed.