978 resultados para Cramer-Von Mises Statistics
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
El funcionamiento interno del cerebro es todavía hoy en día un misterio, siendo su comprensión uno de los principales desafíos a los que se enfrenta la ciencia moderna. El córtex cerebral es el área del cerebro donde tienen lugar los procesos cerebrales de más alto nivel, cómo la imaginación, el juicio o el pensamiento abstracto. Las neuronas piramidales, un tipo específico de neurona, suponen cerca del 80% de los cerca de los 10.000 millones de que componen el córtex cerebral, haciendo de ellas un objetivo principal en el estudio del funcionamiento del cerebro. La morfología neuronal, y más específicamente la morfología dendrítica, determina cómo estas procesan la información y los patrones de conexión entre neuronas, siendo los modelos computacionales herramientas imprescindibles para el estudio de su rol en el funcionamiento del cerebro. En este trabajo hemos creado un modelo computacional, con más de 50 variables relativas a la morfología dendrítica, capaz de simular el crecimiento de arborizaciones dendríticas basales completas a partir de reconstrucciones de neuronas piramidales reales, abarcando desde el número de dendritas hasta el crecimiento los los árboles dendríticos. A diferencia de los trabajos anteriores, nuestro modelo basado en redes Bayesianas contempla la arborización dendrítica en su conjunto, teniendo en cuenta las interacciones entre dendritas y detectando de forma automática las relaciones entre las variables morfológicas que caracterizan la arborización. Además, el análisis de las redes Bayesianas puede ayudar a identificar relaciones hasta ahora desconocidas entre variables morfológicas. Motivado por el estudio de la orientación de las dendritas basales, en este trabajo se introduce una regularización L1 generalizada, aplicada al aprendizaje de la distribución von Mises multivariante, una de las principales distribuciones de probabilidad direccional multivariante. También se propone una distancia circular multivariante que puede utilizarse para estimar la divergencia de Kullback-Leibler entre dos muestras de datos circulares. Comparamos los modelos con y sin regularizaci ón en el estudio de la orientación de la dendritas basales en neuronas humanas, comprobando que, en general, el modelo regularizado obtiene mejores resultados. El muestreo, ajuste y representación de la distribución von Mises multivariante se implementa en un nuevo paquete de R denominado mvCircular.---ABSTRACT---The inner workings of the brain are, as of today, a mystery. To understand the brain is one of the main challenges faced by current science. The cerebral cortex is the region of the brain where all superior brain processes, like imagination, judge and abstract reasoning take place. Pyramidal neurons, a specific type of neurons, constitute approximately the 80% of the more than 10.000 million neurons that compound the cerebral cortex. It makes the study of the pyramidal neurons crucial in order to understand how the brain works. Neuron morphology, and specifically the dendritic morphology, determines how the information is processed in the neurons, as well as the connection patterns among neurons. Computational models are one of the main tools for studying dendritic morphology and its role in the brain function. We have built a computational model that contains more than 50 morphological variables of the dendritic arborizations. This model is able to simulate the growth of complete dendritic arborizations from real neuron reconstructions, starting with the number of basal dendrites, and ending modeling the growth of dendritic trees. One of the main diferences between our approach, mainly based on the use of Bayesian networks, and other models in the state of the art is that we model the whole dendritic arborization instead of focusing on individual trees, which makes us able to take into account the interactions between dendrites and to automatically detect relationships between the morphologic variables that characterize the arborization. Moreover, the posterior analysis of the relationships in the model can help to identify new relations between morphological variables. Motivated by the study of the basal dendrites orientation, a generalized L1 regularization applied to the multivariate von Mises distribution, one of the most used distributions in multivariate directional statistics, is also introduced in this work. We also propose a circular multivariate distance that can be used to estimate the Kullback-Leibler divergence between two circular data samples. We compare the regularized and unregularized models on basal dendrites orientation of human neurons and prove that regularized model achieves better results than non regularized von Mises model. Sampling, fitting and plotting functions for the multivariate von Mises are implemented in a new R packaged called mvCircular.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, FE simulations to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson’s ratio =0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27m to 0.11m with a von Mises model, and from 0.09m to 0.02m with Drucker-Prager plasticity. We conclude that it is important to include friction in nanoindentation simulations of bone.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson‟s ratio f 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 m with a von Mises model, and from 0.09 to 0.02 m with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.
Resumo:
Wheel-rail interaction is one of the most important research topics in railway engineering. It includes track vibration, track impact response and safety of the track. Track structure failures caused by impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. The wheel-rail impact forces occur because of imperfections on the wheels or rails such as wheel flats, irregular wheel profile, rail corrugation and differences in the height of rails connected at a welded joint. In this paper, a finite element model for the wheel flat study is developed by use of the FEA software package ANSYS. The effect of the wheel flat to impact force on sleepers is investigated. It has found that the wheel flat significantly increases impact forces and maximum Von Mises stress, and also delays the peak position of dynamic variation for impact forces on both rail and sleeper.
Resumo:
This paper presents a rigorous and a reliable analytical procedure using finite element (FE) techniques to study the blast response of laminated glass (LG) panel and predict the failure of its components. The 1st principal stress (σ11) is used as the failure criterion for glass and the von mises stress (σv) is used for the interlayer and sealant joints. The results from the FE analysis for mid-span deflection, energy absorption and the stresses at critical locations of glass, interlayer and structural sealant are presented in the paper. These results compared well with those obtained from a free field blast test reported in the literature. The tensile strength (T) of the glass has a significant influence on the behaviour of the LG panel and should be treated carefully in the analysis. The glass panes absorb about 80% of the blast energy for the treated blast load and this should be minimised in the design.
Resumo:
Insulated rail joints are critical for train safety as they control electrical signalling systems; unfortunately they exhibit excessive ratchetting of the railhead near the endpost insulators. This paper reports a three-dimensional global model of these joints under wheel–rail contact pressure loading and a sub-model examining the ratchetting failures of the railhead. The sub-model employs a non-linear isotropic–kinematic elastic–plastic material model and predicts stress/strain levels in the localised railhead zone adjacent to the endpost which is placed in the air gap between the two rail ends at the insulated rail joint. The equivalent plastic strain plot is utilised to capture the progressive railhead damage adequately. Associated field and laboratory testing results of damage to the railhead material suggest that the simulation results are reasonable.
Resumo:
The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.
Resumo:
A perfectly plastic von Mises model is proposed to study the elastic-plastic behavior of a porous hierarchical scaffold used for bone regeneration. The proposed constitutive model is implemented in a finite element (FE) routine to obtain the stress-strain relationship of a uniaxially loaded cube of the scaffold, whose constituent is considered to be composed of cortical bone. The results agree well with experimental data for uniaxial loading case of a cancellous bone. We find that the unhomogenized stress distribution results in different mechanical properties from but still comparable to our previous theory. The scaffold is a promising candidate for bone regeneration.
Resumo:
Purpose: To quantify the uncertainties of carotid plaque morphology reconstruction based on patient-specific multispectral in vivo magnetic resonance imaging (MRI) and their impacts on the plaque stress analysis. Materials and Methods: In this study, three independent investigators were invited to reconstruct the carotid bifurcation with plaque based on MR images from two subjects to study the geometry reconstruction reproducibility. Finite element stress analyses were performed on the carotid bifurcations, as well as the models with artificially modified plaque geometries to mimic the image segmentation uncertainties, to study the impacts of the uncertainties to the stress prediction. Results: Plaque reconstruction reproducibility was generally high in the study. The uncertainties among interobservers are around one or the subpixel level. It also shows that the predicted stress is relatively less sensitive to the arterial wall segmentation uncertainties, and more affected by the accuracy of lipid region definition. For a model with lipid core region artificially increased by adding one pixel on the lipid region boundary, it will significantly increase the maximum Von Mises Stress in fibrous cap (>100%) compared with the baseline model for all subjects. Conclusion: The current in vivo MRI in the carotid plaque could provide useful and reliable information for plaque morphology. The accuracy of stress analysis based on plaque geometry is subject to MRI quality. The improved resolution/quality in plaque imaging with newly developed MRI protocols would generate more realistic stress predictions.
Resumo:
High resolution, USPIO-enhanced MR imaging can be used to identify inflamed atherosclerotic plaque. We report a case of a 79-year-old man with a symptomatic carotid stenosis of 82%. The plaque was retrieved for histology and finite element analysis (FEA) based on the preoperative MR imaging was used to predict maximal Von Mises stress on the plaque. Macrophage location correlated with maximal predicted stresses on the plaque. This supports the hypothesis that macrophages thin the fibrous cap at points of highest stress, leading to an increased risk of plaque rupture and subsequent stroke.
Resumo:
Atheromatous plaque rupture h the cause of the majority of strokes and heart attacks in the developed world. The role of calcium deposits and their contribution to plaque vulnerability are controversial. Some studies have suggested that calcified plaque tends to be more stable whereas others have suggested the opposite. This study uses a finite element model to evaluate the effect of calcium deposits on the stress within the fibrous cap by varying their location and size. Plaque fibrous cap, lipid pool and calcification were modeled as hyperelastic, Isotropic, (nearly) incompressible materials with different properties for large deformation analysis by assigning time-dependent pressure loading on the lumen wall. The stress and strain contours were illustrated for each condition for comparison. Von Mises stress only increases up to 1.5% when varying the location of calcification in the lipid pool distant to the fibrous cap. Calcification in the fibrous cap leads to a 43% increase of Von Mises stress when compared with that in the lipid pool. An increase of 100% of calcification area leads to a 15% stress increase in the fibrous cap. Calcification in the lipid pool does not increase fibrous cap stress when it is distant to the fibrous cap, whilst large areas of calcification close to or in the fibrous cap may lead to a high stress concentration within the fibrous cap, which may cause plaque rupture. This study highlights the application of a computational model on a simulation of clinical problems, and it may provide insights into the mechanism of plaque rupture.
Resumo:
This paper presents nonlinear finite element analysis of adhesively bonded joints considering the elastoviscoplastic constitutive model of the adhesive material and the finite rotation of the joint. Though the adherends have been assumed to be linearly elastic, the yielding of the adhesive is represented by a pressure sensitive modified von Mises yield function. The stress-strain relation of the adhesive is represented by the Ramberg-Osgood relation. Geometric nonlinearity due to finite rotation in the joint is accounted for using the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor in a total Lagrangian formulation. Critical time steps have been calculated based on the eigenvalues of the transition matrices of the viscoplastic model of the adhesive. Stability of the viscoplastic solution and time dependent behaviour of the joints are examined. A parametric study has been carried out with particular reference to peel and shear stress along the interface. Critical zones for failure of joints have been identified. The study is of significance in the design of lap joints as well as on the characterization of adhesive strength. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The use of high-velocity sheet-forming techniques where the strain rates are in excess of 10(2)/s can help us solve many problems that are difficult to overcome with traditional metal-forming techniques. In this investigation, thin metallic plates/foils were subjected to shock wave loading in the newly developed diaphragmless shock tube. The conventional shock tube used in the aerodynamic applications uses a metal diaphragm for generating shock waves. This method of operation has its own disadvantages including the problems associated with repeatable and reliable generation of shock waves. Moreover, in industrial scenario, changing metal diaphragms after every shot is not desirable. Hence, a diaphragmless shock tube is calibrated and used in this study. Shock Mach numbers up to 3 can be generated with a high degree of repeatability (+/- 4 per cent) for the pressure jumps across the primary shock wave. The shock Mach number scatter is within +/- 1.5 per cent. Copper, brass, and aluminium plates of diameter 60 mm and thickness varying from 0.1 to 1 mm are used. The plate peak over-pressures ranging from 1 to 10 bar are used. The midpoint deflection, circumferential, radial, and thickness strains are measured and using these, the Von Mises strain is also calculated. The experimental results are compared with the numerical values obtained using finite element analysis. The experimental results match well with the numerical values. The plastic hinge effect was also observed in the finite element simulations. Analysis of the failed specimens shows that aluminium plates had mode I failure, whereas copper plates had mode II failure.
Resumo:
In the present work, the effect of deformation mode (uniaxial compression, rolling and torsion) on the microstructural heterogeneities in a commercial purity Ni is reported. For a given equivalent von Mises strain, samples subjected to torsion have shown higher fraction of high-angle boundaries, kernel average misorientation and recrystallization nuclei when compared to uniaxially compressed and rolled samples. This is attributed to the differences in the slip system activity under different modes of deformation.