973 resultados para Cracked eggs
Resumo:
A parametric study was carried out to determine the Stress Intensity Factor (SIF) in a cracked circular ring by using the photoelastic technique. The stress intensity factors for mode I deformation were determined by subjecting the specimens to the tensile loading from inner boundary and through the holes. The results of Non-Dimensional Stress Intensity Factor (NDSIF) variation with non-dimensional crack length for both methods of loading are compared with each other and with published results.
Resumo:
A protein exhibiting immunological cross-reactivity with the chicken egg-white riboflavin carrier protein was detected by radioimmunoassay in the eggs and serum of the fresh water fish Cyprinus carpio and subsequently purified to homogeneity by use of affinity chromatography. Fish riboflavin carrier protein resembled chicken riboflavin carrier protein with respect to most of its physicochemical characteristics. The major epitopes of chicken riboflavin carrier protein were shown to be conserved in the fish protein as probed with monoclonal antibodies to the avian vitamin carrier.
Resumo:
In the present study, a lug joint fitted with an interference fit (oversized) pin is considered with radial through cracks situated at diametrically opposite points perpendicular to the loading direction. A finite element contact stress algorithm is developed with linear elastic assumptions to deal with varying partial contact/separation at the pin-plate interface using a marching solution. Stress Intensity Factor (SIF) at the crack tips is evaluated using the Modified Crack Closure Integral (MCCI) method. The effect of change in crack length and edge distance on the load-contact relation, SIFs and stress distributions are studied. A rigorous plane stress elasticity solution of the pin-plate interface at the crack mouth confirmed the existence of the stress concentration leading to a local peak in the radial stress at the crack mouth and provided a method of estimating it quantitatively. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Integrity enhancement of damaged or design deficient structures through repairs is attracting considerable engineering attention. Bonded composite patch repairs to cracked metallic sheets offer various advantages over riveted doubler type, particularly for airframe applications. This paper first reviews the R&D activity in the area of structural repairs. It then approaches the problem of a composite patch repair to a cracked aluminium sheet with different finite element modelling strategies and compares their outcome. The efficient finite element modelling approach thus established is used to study the effect of patch material, patch size, patch symmetry and adhesive thickness on repair performance as the crack grows in the repair configuration. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Finite element analyses of a long hollow cylinder having an axisymmetric circumferential internal edge crack, subjected to convective cooling on the inner surface are performed. The transient thermal stress intensity factor is estimated using a domain version of the J-integral method. The effect of the thickness of the cylinder, crack length, and heat transfer coefficient on the stress intensity factor history are studied. The variations of critical normalized stress intensity factor with crack length-to-thickness ratio for different parameters are presented. The results show that if a small inner surface crack begins to grow, its stress intensity factor will increase with increase in crack length, reach a maximum, and then begin to drop. Based on the results, a fracture-based design methodology for cracked hollow pipes under transient thermal loads is discussed.
Resumo:
The objective of this paper is to propose a numerically integrated modified virtual crack closure integral (NI-MVCCI) technique for fracture analysis of cracked plate panels. NI-MVCCI technique is generalized one and the expressions for computing the strain energy release rate (SERR) are independent of the finite element employed. NI-MVCCI technique has been demonstrated for 4-noded, 8-noded (regular and quarter-point) and 9-noded isoparametric finite elements. Numerical studies on fracture analysis of 2-D crack (mode-I and mode-II) problems have been conducted employing these elements. SERR and stress intensity factors (SIF) have been computed for these problems and found to be in good agreement with the respective analytical solutions available in the literature. The appropriate Gauss numerical integration order to be employed for each of these elements for accurate computation of SERR and SIF has been recommended based on the studies.
Resumo:
In this work, an attempt has been made to assess the fatigue life of reinforced concrete beams, by proposing a crack propagation law which accounts for parameters such as fracture toughness, crack length, loading ratio and structural size. A numerical procedure is developed to compute fatigue life of RC beams. The predicted results are compared with the available experimental data in the literature and seen to agree reasonably well. Further, in order to assess the remaining life of an RC member, the moment carrying capacity is determined as a function of crack extension, based on the crack tip opening displacement and residual strength of the member is computed at an event of unstable fracture.
Resumo:
Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.
Resumo:
In the primitively eusocial wasp Ropalidia marginata, mating is not necessary for a female wasp to develop her ovaries, lay eggs, and even to become the sole egg layer of her colony despite the presence of other mated nestmates. Here, we show that virgin wasps do not differ from their mated counterparts in the extent and rapidity of their ovarian development, in the proportion of individuals that build a nest and laid eggs, and in the time taken to do so. However, a significantly larger proportion of virgin females showed resorbing oocytes, and laid fewer eggs as compared to mated individuals. Thus, virgin females have the ability to develop ovaries and lay eggs but also to refrain from necessarily laying all mature eggs produced, before mating opportunities arise. This dual ability would be adaptive in haplodiploid, tropical species with perennial nesting cycles and frequent opportunities for workers to become replacement queens or solitary nest foundresses throughout the year.
Resumo:
We analyze the utility of edge cracked semicircular disk (ECSD) for rapid assessment of fracture toughness using compressive loading. Continuing our earlier work on ECSD, a theoretical examination here leads to a novel way for synthesizing weight functions using two distinct form factors. The efficacy of ECSD mode-I weight function synthesized using displacement and form factor methods is demonstrated by comparing with finite element results. Theory of elasticity in conjunction with finite element method is utilized to analyze crack opening potency of ECSD under eccentric compression to explore newer configurations of ECSD for fracture testing.
Resumo:
Edge cracked specimens have been widely utilized for fracture testing. Edge cracked semicircular disk (ECSD) specimen has now been well characterized with regard to its form factor and weight function. This paper presents a modified semicircular ring version of this specimen to enhance the form factor in general while retaining other desirable features. The efficacy of the modified design is proved by combining theory of elasticity solutions with finite element results to arrive at the optimum design geometry. New insights emerging from this work are used to theoretically re-examine the arch-tension and the four-point bend specimens. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new mixed-mode compression fracture specimen, obliquely oriented edge cracked semicircular disk (OECSD) is analyzed by extending pure opening mode configuration of edge cracked semicircular disk (ECSD) under Hertzian compression. Photoelastic experiments are conducted on two different specimens of OECSD of same size and different crack lengths and inclinations. Finite element method (FEM) is used to solve a number of cases of the problem varying crack length and crack inclination. FE results show a good match with experiments. Inclination of edge crack in OECSD can be so made as to obtain any mode-mixity ratio between zero and one and beyond for any crack length. The new specimen can be used for fracture testing under compression more conveniently than the existing ones in several ways.
Resumo:
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.