939 resultados para Crack-bridging
Resumo:
This report describes recent updates to the custom-built data-acquisition hardware operated by the Center for Hypersonics. In 2006, an ISA-to-USB bridging card was developed as part of Luke Hillyard's final-year thesis. This card allows the hardware to be connected to any recent personal computers via a (USB or RS232) serial port and it provides a number of simple text-based commands for control of the hardware. A graphical user interface program was also updated to help the experimenter manage the data acquisition functions. Sampled data is stored in text files that have been compressed with the gzip for mat. To simplify the later archiving or transport of the data, all files specific to a shot are stored in a single directory. This includes a text file for the run description, the signal configuration file and the individual sampled-data files, one for each signal that was recorded.
Resumo:
Fracture mechanics tests were carried out for AerMet 100 in distilled water and NaCl (3.5 and 35 gl(-1)). The initiation period at higher values of the stress intensity factor indicated that load application in the stress corrosion cracking (SCC) environment is a necessary but not sufficient factor for SCC and that time is needed for some other factor (e.g., the local hydrogen concentration) to reach an appropriate value. The threshold stress intensity factor, K-ISSC, was found to increase with decreasing NaCl concentration. The plateau stress corrosion crack velocity was 2 x 10(-8) ms(-1) for NaCl (3.5 and 35 gl(-1)). The fracture mode was transgranular with small areas of an intergranular nature. (C) 1998 Chapman & Hall.
Resumo:
This is the first paper in a study on the influence of the environment on the crack tip strain field for AISI 4340. A stressing stage for the environmental scanning electron microscope (ESEM) was constructed which was capable of applying loads up to 60 kN to fracture-mechanics samples. The measurement of the crack tip strain field required preparation (by electron lithography or chemical etching) of a system of reference points spaced at similar to 5 mu m intervals on the sample surface, loading the sample inside an electron microscope, image processing procedures to measure the displacement at each reference point and calculation of the strain field. Two algorithms to calculate strain were evaluated. Possible sources of errors were calculation errors due to the algorithm, errors inherent in the image processing procedure and errors due to the limited precision of the displacement measurements. Estimation of the contribution of each source of error was performed. The technique allows measurement of the crack tip strain field over an area of 50 x 40 mu m with a strain precision better than +/- 0.02 at distances larger than 5 mu m from the crack tip. (C) 1999 Kluwer Academic Publishers.
Resumo:
Crack tip strain maps have been measured for AISI 4340 high strength steel. No significant creep was observed. The measured values of CTOD were greater than expected from the HRR model. Crack tip branching was observed in every experiment. The direction of crack branching was in the same direction as a major ridge'' of epsilon(yy) strain, which in turn was in the same direction as predicted by the HRR model. Furthermore, the measured magnitudes of the epsilon(y)y strain in this same direction were in general greater than the values predicted by the HRR model. This indicates more plasticity in the crack tip region than expected from the HRR model. This greater plasticity could be related to the larger than expected CTOD values. The following discrepancies between the measured strain fields for AISI 4340 and the HRR predictions are noteworthy: (1) The crack branching. (2) Values of CTOD significantly higher than predicted by HRR. (3) The major ridge'' of epsilon(yy) strain an angle of about 60 degrees with the direction of overall propagation of the fatigue precrack, in which the measured magnitudes of the epsilon(yy) strain were greater than the values predicted by the HRR model. (4) Asymmetric shape of the plastic zone as measured by the epsilon(yy) strain. (5) Values of shear strain gamma(xy) significantly higher than predicted by the HRR model. (C) 1999 Kluwer Academic Publishers.
Resumo:
This paper studied the influence of hydrogen and water vapour environments on the plastic behaviour in the vicinity of the crack tip for AISI 4340. Hydrogen and water vapour (at a pressure of 15 Torr) significantly increased the crack tip opening displacement. The crack tip strain distribution in 15 Torr hydrogen was significantly different to that measured in vacuum. In the presence of sufficient hydrogen, the plastic zone was larger, was elongated in the direction of crack propagation and moreover there was significant creep. These observations support the hydrogen enhanced localised plasticity model for hydrogen embrittlement in this steel. The strain distribution in the presence of water vapour also suggests that SCC in AISI 4340 occurs via the hydrogen enhanced localised plasticity mechanism. (C) 1999 Kluwer Academic Publishers.
Resumo:
The aim of this study is to create a two-tiered assessment combining restoration and conservation, both needed for biodiversity management. The first tier of this approach assesses the condition of a site using a standard bioassessment method, AUSRIVAS, to determine whether significant loss of biodiversity has occurred because of human activity. The second tier assesses the conservation value of sites that were determined to be unimpacted in the first step against a reference database. This ensures maximum complementarity without having to set a priori target areas. Using the reference database, we assign site-specific and comparable coefficients for both restoration (Observed/Expected taxa with > 50% probability of occurrence) and conservation values (O/E taxa with < 50%, rare taxa). In a trial on 75 sites on rivers around Sydney, NSW, Australia we were able to identify three regions: (1) an area that may need restoration; (2) an area that had a high conservation value and; (3) a region that was identified as having significant biodiversity loss but with high potential to respond to rehabilitation and become a biodiversity hotspot. These examples highlight the use of the new framework as a comprehensive system for biodiversity assessment.
Resumo:
Crack cocaine-dependent individuals (CCDI) present abnormalities in both social adjustment and decision making, but few studies have examined this association. This study investigated cognitive and social performance of 30 subjects (CCDI x controls); CCDI were abstinent for 2 weeks. We used the Social Adjustment Scale (SAS), Wisconsin Card Sorting Test (WCST), and Iowa Gambling Task (IGT). Disadvantageous choices on the IGT were associated with higher levels of social dysfunction in CCDI, suggesting the ecological validity of the IGT. Social dysfunction and decision making may be linked to the same underlying prefrontal dysfunction, but the nature of this association should be further investigated. (Am J Addict 2010;00: 1-9).
Resumo:
In Spain, crack cocaine use is silently increasing. In Barcelona, an intentional sample was selected to describe the general characteristics of this consumption. Participants were submitted to an interview and data were analyzed through qualitative research procedures. Users are young males and of low socioeconomic status and formal education. The major pattern of use is compulsive. Illegal income activities are the choice for crack cocaine or money acquisition, increasing individual and social health costs. Polydrug use is a matter of concern. Although these findings can not be generalized, they should be considered for the development of public policies to adequately address crack cocaine users` needs.
Resumo:
Smoked cocaine (crack cocaine) causes several forms of injury to the respiratory tract, including asthma exacerbations, lung edema and hemorrhage, and nasal mucosal alterations. Few studies, however, have assessed respiratory tract pathology in habitual users of crack cocaine. Here, we describe the histological alterations in the respiratory tract of mice caused by chronic inhalation of crack cocaine. Twenty 2-month-old BALB/c mice were exposed to the smoke of 5 g crack cocaine in an inhalation chamber once a day for two months and compared to controls (n = 10). We then morphometrically analyzed nose and bronchiolar epithelial alterations, bronchiolar and alveolar macrophage cell density, alveolar hemosiderin content, and in addition determined the vasoconstriction index and the wall thickness of pulmonary arteries. The serum cocaine level was 212.5 ng/mL after a single inhalation. The mucus content of the nasal epithelium increased in crack-exposed animals, and the nasal and bronchial epithelium thickness decreased significantly. The alveolar hemosiderin content and the alveolar and bronchiolar macrophage cell density increased in animals exposed to crack. The vasoconstriction index increased in the pulmonary arteries of the exposed group. Chronic crack cocaine inhalation causes extensive histological changes along the entire respiratory tract.
Resumo:
Objective. To determine the slow crack growth (SCG) and Weibull parameters of five dental ceramics: a vitreous porcelain (V), a leucite-based porcelain (D), a leucite-based glass-ceramic (E1), a lithium disilicate glass-ceramic (E2) and a glass-infiltrated alumina composite (IC). Methods. Eighty disks (empty set 12mm x 1.1mm thick) of each material were constructed according to manufacturers` recommendations and polished. The stress corrosion susceptibility coefficient (n) was obtained by dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates immersed in artificial saliva at 37 degrees C. Weibull parameters were calculated for the 30 specimens tested at 1MPa/s in artificial saliva at 37 degrees C. The 80 specimens were distributed as follows: 10 for each stress rate (10(-2), 10(-1), 10(1), 10(2) MPa/s), 10 for inert strength (10(2) MPa/s, silicon oil) and 30 for 10(0) MPa/s. Fractographic analysis was also performed to investigate the fracture origin. Results. E2 showed the lowest slow crack growth susceptibility coefficient (17.2), followed by D (20.4) and V (26.3). E1 and IC presented the highest n values (30.1 and 31.1, respectively). Porcelain V presented the lowest Weibull modulus (5.2). All other materials showed similar Weibull modulus values, ranging from 9.4 to 11.7. Fractographic analysis indicated that for porcelain D, glass-ceramics E1 and E2, and composite IC crack deflection was the main toughening mechanism. Significance. This study provides a detailed microstructural and slow crack growth characterization of widely used dental ceramics. This is important from a clinical standpoint to assist the clinician in choosing the best ceramic material for each situation as well as predicting its clinical longevity. It also can be helpful in developing new materials for dental prostheses. (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To determine the effect of ion exchange on slow crack growth (SCG) parameters (n, stress corrosion susceptibility coefficient, and sigma(f0), scaling parameter) and Weibull parameters (m, Weibull modulus, and sigma(0), characteristic strength) of a dental porcelain. Methods. 160 porcelain discs were fabricated according to manufacturer`s instructions, polished through 1 mu m and divided into two groups: GC (control) and GI (submitted to an ion exchange procedure using a KNO(3) paste at 470 degrees C for 15 min). SCG parameters were determined by biaxial flexural strength test in artificial saliva at 37 degrees C using five constant stress rates (n =10). 20 specimens of each group were tested at 1 MPa/s to determine Weibull parameters. The SPT diagram was constructed using the least-squares fit of the strength data versus probability of failure. Results. Mean values of m and sigma(0) (95% confidence interval), n and sigma(f0) (standard deviation) were, respectively: 13.8 (10.1-18.8) and 60.4 (58.5 - 62.2), 24.1 (2.5) and 58.1 (0.01) for GC and 7.4 (5.3 -10.0) and 136.8 (129.1-144.7), 36.7 (7.3) and 127.9 (0.01) for GI. Fracture stresses (MPa) calculated using the SPT diagram for lifetimes of 1 day, 1 year and 10 years (at a 5% failure probability) were, respectively, 31.8, 24.9 and 22.7 for GC and 71.2, 60.6 and 56.9 for GI. Significance. For the porcelain tested, the ion exchange process improved strength and resistance to SCG, however, the material`s reliability decreased. The predicted fracture stress at 5% failure probability for a lifetime of 10 years was also higher for the ion treated group. (C) 009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.