970 resultados para Covariance estimate
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A total of 20,065 weights recorded on 3016 Nelore animals were used to estimate covariance functions for growth from birth to 630 days of age, assuming a parametric correlation structure to model within-animal correlations. The model of analysis included fixed effects of contemporary groups and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Genetic effects of the animal and its dam and maternal permanent environmental effects were modelled by random regressions on Legendre polynomials of age at recording. Changes in direct permanent environmental effect variances were modelled by a polynomial variance function, together with a parametric correlation function to account for correlations between ages. Stationary and nonstationary models were used to model within-animal correlations between different ages. Residual variances were considered homogeneous or heterogeneous, with changes modelled by a step or polynomial function of age at recording. Based on Bayesian information criterion, a model with a cubic variance function combined with a nonstationary correlation function for permanent environmental effects, with 49 parameters to be estimated, fitted best. Modelling within-animal correlations through a parametric correlation structure can describe the variation pattern adequately. Moreover, the number of parameters to be estimated can be decreased substantially compared to a model fitting random regression on Legendre polynomial of age. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Evapotranspiration (ET) plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of the SEBAL algorithm for estimating surface turbulent heat fluxes at regional scale, using 28 images from MODIS. SEBAL estimates are compared with eddy-covariance (EC) measurements and results from the hydrological model MGB-IPH. SEBAL instantaneous estimates of latent heat flux (LE) yielded r(2) = 0.64 and r(2) = 0.62 over sugarcane croplands and savannas when compared against in situ EC estimates. At the same sites, daily aggregated estimates of LE were r(2) = 0.76 and r(2) = 0.66, respectively. Energy balance closure showed that turbulent fluxes over sugarcane croplands were underestimated by 7% and 9% over savannas. Average daily ET from SEBAL is in close agreement with estimates from the hydrological model for an overlay of 38,100 km(2) (r(2) = 0.88). Inputs to which the algorithm is most sensitive are vegetation index (NDVI), gradient of temperature (dT) to compute sensible heat flux (H) and net radiation (Re). It was verified that SEBAL has a tendency to overestimate results both at local and regional scales probably because of low sensitivity to soil moisture and water stress. Nevertheless the results confirm the potential of the SEBAL algorithm, when used with MODIS images for estimating instantaneous LE and daily ET from large areas.
Resumo:
In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in photosynthetic rate and leaf area of different species. Photosynthetic properties (light-response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance measurements (EC). Species areal cover rather than differences in photosynthetic properties determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which in turn determined the seasonal variation in ecosystem PG. The upscaled growing-season PG estimate, 230 g C/m**2, agreed well with the GPP estimated by the EC, 243 g C/m**2. Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species together with their differences in photosynthetic parameters shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity may increase the stability of C sink of boreal bogs.
Resumo:
We examined the genetic basis of clinal adaptation by determining the evolutionary response of life-history traits to laboratory natural selection along a gradient of thermal stress in Drosophila serrata. A gradient of heat stress was created by exposing larvae to a heat stress of 36degrees for 4 hr for 0, 1, 2, 3, 4, or 5 days of larval development, with the remainder of development taking place at 25degrees. Replicated lines were exposed to each level of this stress every second generation for 30 generations. At the end of selection, we conducted a complete reciprocal transfer experiment where all populations were raised in all environments, to estimate the realized additive genetic covariance matrix among clinal environments in three life-history traits. Visualization of the genetic covariance functions of the life-history traits revealed that the genetic correlation between environments generally declined as environments became more different and even became negative between the most different environments in some cases. One exception to this general pattern was a life-history trait representing the classic trade-off between development time and body size, which responded to selection in a similar genetic fashion across all environments. Adaptation to clinal environments may involve a number of distinct genetic effects along the length of the cline, the complexity of which may not be fully revealed by focusing primarily on populations at the ends of the cline.
Resumo:
In this study, we examined genetic and environmental influences on covariation among two reading tests used in neuropsychological assessment (Cambridge Contextual Reading Test [CCRT], [Beardsall, L., and Huppert, F. A. ( 1994). J. Clin. Exp. Neuropsychol. 16: 232 - 242], Schonell Graded Word Reading Test [SGWRT], [ Schonell, F. J., and Schonell, P. E. ( 1960). Diagnostic and attainment testing. Edinburgh: Oliver and Boyd.]) and among a selection of IQ subtests from the Multidimensional Aptitude Battery (MAB), [Jackson, D. N. (1984). Multidimensional aptitude battery, Ontario: Research Psychologists Press.] and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) [Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). San Antonio: The Psychological Corporation]. Participants were 225 monozygotic and 275 dizygotic twin pairs aged from 15 years to 18 years ( mean, 16 years). For Verbal IQ subtests, phenotypic correlations with the reading tests ranged from 0.44 to 0.65. For Performance IQ subtests, phenotypic correlations with the reading tests ranged from 0.23 to 0.34. Results of Structural Equation Modeling (SEM) supported a model with one genetic General factor and three genetic group factors ( Verbal, Performance, Reading). Reading performance was influenced by the genetic General factor ( accounting for 13% and 20% of the variance for the CCRT and SGWRT, respectively), the genetic Verbal factor ( explaining 17% and 19% of variance for the CCRT and SGWRT), and the genetic Reading factor ( explaining 21% of the variance for both the CCRT and SGWRT). A common environment factor accounted for 25% and 14% of the CCRT and SGWRT variance, respectively. Genetic influences accounted for more than half of the phenotypic covariance between the reading tests and each of the IQ subtests. The heritabilities of the CCRT and SGWRT were 0.54 and 0.65, respectively. Observable covariance between reading assessments used by neuropsychologists to estimate IQ and IQ subtests appears to be largely due to genetic effects.
Resumo:
Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.
Resumo:
Prey size is an important factor in food consumption. In studies of feeding ecology, prey items are usually measured individually using calipers or ocular micrometers. Among amphibians and reptiles, there are species that feed on large numbers of small prey items (e.g. ants, termites). This high intake makes it difficult to estimate prey size consumed by these animals. We addressed this problem by developing and evaluating a procedure for subsampling the stomach contents of such predators in order to estimate prey size. Specifically, we developed a protocol based on a bootstrap procedure to obtain a subsample with a precision error of at the most 5%, with a confidence level of at least 95%. This guideline should reduce the sampling effort and facilitate future studies on the feeding habits of amphibians and reptiles, and also provide a means of obtaining precise estimates of prey size.
Resumo:
This cross-sectional study describes the variation in the dietary intake of energy and macronutrients based on estimated coefficients of within- and between-person variation and intends to calculate the number of days required to evaluate the dietary intake of adolescents in Piracicaba, Brazil. The sample was made up by ninety-two adolescents aged between eleven and sixteen years. Interviews were performed to assess demographic, anthropometric and dietary variables, which were evaluated by the answers obtained through two 24-hour recalls. Descriptive analyses were performed and variances and Coefficients of variation within- and between-person were obtained by results of one-way ANOVA. The mean energy intake observed was 2,326.2 kilocalories; mean macronutrient intake came to 89.0 grams of fatty acids, 305.3 grams of carbohydrates and 82.2 grams of proteins. Coefficients of within-person variation ranged from 36% to 45%, while between-person coefficients varied from 26% to 31%. Variance ratios ranged from 1.35 (carbohydrate) to 2.62 (protein). The lowest number of observations required to correctly evaluate the usual diet calculated (r = 0.90) was six days, for carbohydrates while the highest was eleven, for proteins. Coefficients of variation were similar to those observed in international studies. We conclude that, in this study, two observations were sufficient to obtain reasonable correlations. However, six evaluations are necessary for these adolescents in order to obtain excellent correlations.
Resumo:
A combination of trajectory sensitivity method and master-slave synchronization was proposed to parameter estimation of nonlinear systems. It was shown that master-slave coupling increases the robustness of the trajectory sensitivity algorithm with respect to the initial guess of parameters. Since synchronization is not a guarantee that the estimation process converges to the correct parameters, a conditional test that guarantees that the new combined methodology estimates the true values of parameters was proposed. This conditional test was successfully applied to Lorenz's and Chua's systems, and the proposed parameter estimation algorithm has shown to be very robust with respect to parameter initial guesses and measurement noise for these examples. Copyright (C) 2009 Elmer P. T. Cari et al.
Resumo:
The crosstalk phenomenon consists in recording the volume-conducted electromyographic activity of muscles other than that under study. This interference may impair the correct interpretation of the results in a variety of experiments. A new protocol is presented here for crosstalk assessment between two muscles based on changes in their electrical activity following a reflex discharge in one of the muscles in response to nerve stimulation. A reflex compound muscle action potential (H-reflex) was used to induce a silent period in the muscle that causes the crosstalk, called here the remote muscle. The rationale is that if the activity recorded in the target muscle is influenced by a distant source (the remote muscle) a silent period observed in the electromyogram (EMG) of the remote muscle would coincide with a decrease in the EMG activity of the target muscle. The new crosstalk index is evaluated based on the root mean square (RMS) values of the EMGs obtained in two distinct periods (background EMG and silent period) of both the remote and the target muscles. In the present work the application focused on the estimation of the degree of crosstalk from the soleus muscle to the tibialis anterior muscle during quiet stance. However, the technique may be extended to other pairs of muscles provided a silent period may be evoked in one of them. (C) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.