970 resultados para Covariance estimate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evapotranspiration (ET) plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of the SEBAL algorithm for estimating surface turbulent heat fluxes at regional scale, using 28 images from MODIS. SEBAL estimates are compared with eddy-covariance (EC) measurements and results from the hydrological model MGB-IPH. SEBAL instantaneous estimates of latent heat flux (LE) yielded r(2) = 0.64 and r(2) = 0.62 over sugarcane croplands and savannas when compared against in situ EC estimates. At the same sites, daily aggregated estimates of LE were r(2) = 0.76 and r(2) = 0.66, respectively. Energy balance closure showed that turbulent fluxes over sugarcane croplands were underestimated by 7% and 9% over savannas. Average daily ET from SEBAL is in close agreement with estimates from the hydrological model for an overlay of 38,100 km(2) (r(2) = 0.88). Inputs to which the algorithm is most sensitive are vegetation index (NDVI), gradient of temperature (dT) to compute sensible heat flux (H) and net radiation (Re). It was verified that SEBAL has a tendency to overestimate results both at local and regional scales probably because of low sensitivity to soil moisture and water stress. Nevertheless the results confirm the potential of the SEBAL algorithm, when used with MODIS images for estimating instantaneous LE and daily ET from large areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in photosynthetic rate and leaf area of different species. Photosynthetic properties (light-response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance measurements (EC). Species areal cover rather than differences in photosynthetic properties determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which in turn determined the seasonal variation in ecosystem PG. The upscaled growing-season PG estimate, 230 g C/m**2, agreed well with the GPP estimated by the EC, 243 g C/m**2. Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species together with their differences in photosynthetic parameters shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity may increase the stability of C sink of boreal bogs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the genetic basis of clinal adaptation by determining the evolutionary response of life-history traits to laboratory natural selection along a gradient of thermal stress in Drosophila serrata. A gradient of heat stress was created by exposing larvae to a heat stress of 36degrees for 4 hr for 0, 1, 2, 3, 4, or 5 days of larval development, with the remainder of development taking place at 25degrees. Replicated lines were exposed to each level of this stress every second generation for 30 generations. At the end of selection, we conducted a complete reciprocal transfer experiment where all populations were raised in all environments, to estimate the realized additive genetic covariance matrix among clinal environments in three life-history traits. Visualization of the genetic covariance functions of the life-history traits revealed that the genetic correlation between environments generally declined as environments became more different and even became negative between the most different environments in some cases. One exception to this general pattern was a life-history trait representing the classic trade-off between development time and body size, which responded to selection in a similar genetic fashion across all environments. Adaptation to clinal environments may involve a number of distinct genetic effects along the length of the cline, the complexity of which may not be fully revealed by focusing primarily on populations at the ends of the cline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we examined genetic and environmental influences on covariation among two reading tests used in neuropsychological assessment (Cambridge Contextual Reading Test [CCRT], [Beardsall, L., and Huppert, F. A. ( 1994). J. Clin. Exp. Neuropsychol. 16: 232 - 242], Schonell Graded Word Reading Test [SGWRT], [ Schonell, F. J., and Schonell, P. E. ( 1960). Diagnostic and attainment testing. Edinburgh: Oliver and Boyd.]) and among a selection of IQ subtests from the Multidimensional Aptitude Battery (MAB), [Jackson, D. N. (1984). Multidimensional aptitude battery, Ontario: Research Psychologists Press.] and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) [Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). San Antonio: The Psychological Corporation]. Participants were 225 monozygotic and 275 dizygotic twin pairs aged from 15 years to 18 years ( mean, 16 years). For Verbal IQ subtests, phenotypic correlations with the reading tests ranged from 0.44 to 0.65. For Performance IQ subtests, phenotypic correlations with the reading tests ranged from 0.23 to 0.34. Results of Structural Equation Modeling (SEM) supported a model with one genetic General factor and three genetic group factors ( Verbal, Performance, Reading). Reading performance was influenced by the genetic General factor ( accounting for 13% and 20% of the variance for the CCRT and SGWRT, respectively), the genetic Verbal factor ( explaining 17% and 19% of variance for the CCRT and SGWRT), and the genetic Reading factor ( explaining 21% of the variance for both the CCRT and SGWRT). A common environment factor accounted for 25% and 14% of the CCRT and SGWRT variance, respectively. Genetic influences accounted for more than half of the phenotypic covariance between the reading tests and each of the IQ subtests. The heritabilities of the CCRT and SGWRT were 0.54 and 0.65, respectively. Observable covariance between reading assessments used by neuropsychologists to estimate IQ and IQ subtests appears to be largely due to genetic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthcare-associated methicillin-resistant Staphylococcus aureus(MRSA) infection may cause increased hospital stay or, sometimes, death. Quantifying this effect is complicated because it is a time-dependent exposure: infection may prolong hospital stay, while longer stays increase the risk of infection. We overcome these problems by using a multinomial longitudinal model for estimating the daily probability of death and discharge. We then extend the basic model to estimate how the effect of MRSA infection varies over time, and to quantify the number of excess ICU days due to infection. We find that infection decreases the relative risk of discharge (relative risk ratio = 0.68, 95% credible interval: 0.54, 0.82), but is only indirectly associated with increased mortality. An infection on the first day of admission resulted in a mean extra stay of 0.3 days (95% CI: 0.1, 0.5) for a patient with an APACHE II score of 10, and 1.2 days (95% CI: 0.5, 2.0) for a patient with an APACHE II score of 30. The decrease in the relative risk of discharge remained fairly constant with day of MRSA infection, but was slightly stronger closer to the start of infection. These results confirm the importance of MRSA infection in increasing ICU stay, but suggest that previous work may have systematically overestimated the effect size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective We aimed to predict sub-national spatial variation in numbers of people infected with Schistosoma haematobium, and associated uncertainties, in Burkina Faso, Mali and Niger, prior to implementation of national control programmes. Methods We used national field survey datasets covering a contiguous area 2,750 × 850 km, from 26,790 school-aged children (5–14 years) in 418 schools. Bayesian geostatistical models were used to predict prevalence of high and low intensity infections and associated 95% credible intervals (CrI). Numbers infected were determined by multiplying predicted prevalence by numbers of school-aged children in 1 km2 pixels covering the study area. Findings Numbers of school-aged children with low-intensity infections were: 433,268 in Burkina Faso, 872,328 in Mali and 580,286 in Niger. Numbers with high-intensity infections were: 416,009 in Burkina Faso, 511,845 in Mali and 254,150 in Niger. 95% CrIs (indicative of uncertainty) were wide; e.g. the mean number of boys aged 10–14 years infected in Mali was 140,200 (95% CrI 6200, 512,100). Conclusion National aggregate estimates for numbers infected mask important local variation, e.g. most S. haematobium infections in Niger occur in the Niger River valley. Prevalence of high-intensity infections was strongly clustered in foci in western and central Mali, north-eastern and northwestern Burkina Faso and the Niger River valley in Niger. Populations in these foci are likely to carry the bulk of the urinary schistosomiasis burden and should receive priority for schistosomiasis control. Uncertainties in predicted prevalence and numbers infected should be acknowledged and taken into consideration by control programme planners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining sensitivity and specificity of a postoperative infection surveillance process is a difficult undertaking. Because postoperative infections are rare, vast numbers of negative results exist, and it is often not reasonable to assess them all. This study gives a methodological framework for estimating sensitivity and specificity by taking only a small sample of the number of patients who test negative and comparing their findings to the reference or “gold standard” rather than comparing the findings of all patients to the gold standard. It provides a formula for deriving confidence intervals for these estimates and a guide to minimum requirements for sampling results.