975 resultados para Cousinia, Systematics, Phylogeny
Resumo:
The genera Pachymenes de Saussure and Santamenes Giordani Soika arerevised and the phylogenetic relationships among their species, based on external mor-phology and male genitalia, are presented. The cladistics analysis, using 22 terminalspecies (19 ingroup and 3 outgroup species) and 44 characters, produced a single clado-gram under implied weighting. Both genera were recovered as paraphyletic, althoughttwo major clades were formed and were well supported by the re-sampling analysis.We propose the synonymy of Pachymenes with Santamenes, and the description of twonew species: P. saussurei Grandinete n.sp. and P. riograndensis Grandinete n.sp..Newcombinations are: Pachymenes novarae (de Saussure) n.comb., P. olympicus (Zavattari)n.comb., P. peregrinus (Zavattari) n.comb. and P. santanna (de Saussure) revised combi-nation. We state the synonymy of P. obscurus orellanoides under P. obscurus consuetus,reviewing the status of the latter and raising P. consuetus to species level. Pachymenesorellanae vardyi is synonymized under P. orellanae; P. ghilianii olivaceus, P. ghilianiiavissimus and P. peruanus are proposed as synonyms of P. ghilianii; P. picturatusobscuratus is synonymized under P. laeviventris; P. picturatus nigromaculatus andP. picturatus var . intermedia are synonymized under P. picturatus and P. a t ra var . ornatis-sima get its lectotype designated and proposed as synonym of P. ater.
Resumo:
The taxonomic revision of the genus Lamontichthys Miranda-Ribeiro, based on the examination of 164 specimens of different river drainages throughout the Amazon basin, revealed the presence of six species of which two are new. Lamontichthys filamentosus occurs in the upper and middle portions of the rio Amazonas basin; L. llanero in the río Orinoco basin; L. maracaibero in the lago Maracaibo basin; and L. stibaros in the upper río Amazonas basin. Lamontichthys avacanoeiro, new species, occurs in the upper rio Tocantins basin; and L. parakana, new species, in the lower rio Tocantins basin. The new species represent a considerable extension in the so far known distribution of the genus. A parsimony analysis, including 87 osteological and external morphological characters from Lamontichthys and related taxa (total of 16), resulted in three most parsimonious trees with 194 steps (CI = 0.73 and RI = 0.78). The hypothesis of monophyly of Lamontichthys is corroborated and supported by six derived characters. Within Lamontichthys two monophyletic assemblages are recognized, one includes L. avacanoeiro and L. stibaros, the other includes L. maracaibero and the clade formed by L. filamentosus and L. llanero. The relationships of Lamontichthys parakana, a species that was not included in the phylogenetic analysis is discussed. The monophyly and relationships of the monotypic genus Pterosturisoma microps are also discussed.
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other "colubrid" groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
Medusae and polyps of Clytia are abundantly found in coastal marine environments and one species in the genus-Clytia hemisphaerica (Linnaeus, 1767)-has become an important experimental model. Yet, only 10 species in the genus have had their life cycle investigated. Most species of Clytia are also poorly described, and detailed life cycle and morphological studies are needed for accurate species-level identifications. Here, we investigated the life cycle of Clytia elsaeoswaldae Stechow, 1914, a species described for the tropical western Atlantic and subsequently considered conspecific to the nearly-cosmopolitan species Clytia gracilis (Sars, 1850) and Clytia hemisphaerica, originally described for the temperate North Atlantic. Based on observations of mature medusae and multiple colonies from southeastern Brazil and the U. S. Virgin Islands (type locality), our results show that C. elsaeoswaldae is morphologically distinct from C. gracilis and C. hemisphaerica. The morphological results are corroborated by a multigene phylogenetic analysis of the genus Clytia, which shows that C. gracilis-like species form a polyphyletic group of several species. These results suggest that the nearly-cosmopolitan distribution attributed to some species of Clytia may be due to the non-recognition of morphologically similar species with more restricted ranges.
Resumo:
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and nematodes and are associated with various reproductive abnormalities in their hosts. Insect-associated Wolbachia form a monophyletic clade in the α-Proteobacteria and recently have been separated into two supergroups (A and B) and 19 groups. Our recent polymerase chain reaction (PCR) survey using wsp specific primers indicated that various strains of Wolbachia were present in mosquitoes collected from Southeast Asia. Here, we report the phylogenetic relationship of the Wolbachia strains found in these mosquitoes using wsp gene sequences. Our phylogenetic analysis revealed eight new Wolbachia strains, five in the A supergroup and three in the B supergroup. Most of the Wolbachia strains present in Southeast Asian mosquitoes belong to the established Mors, Con, and Pip groups.
Resumo:
The genus Macrobrachium Bate, 1868 is one of the best examples of widespread crustacean genera distributed globally throughout tropical and subtropical waters. Previous investigators have noted the systematic complexity of the group, and have suggested rearrangements within the family Palaemonidae. Our phylogenetic analysis of new mitochondrial DNA sequences of 58 species of Macrobrachium distributed mainly in America support the hypothesis of monophyly of this genus, if Cryphiops Dana, 1852 is accepted as a generic synonym. We concluded that the independent evolution of different types of life cycle (abbreviated larval development-ALD and extended larval development-ELD) must have occurred more than once in the history of the group. Similarly, we also concluded that the current type species of the genus, Macrobrachium americanum Bate, 1868, should not be considered valid, as previously proposed. The synonymy of two members of the `olfersi` species complex (M. birai Lobao, Melo&Fernandes, 1986 and M. holthuisi Genofre&Lobao, 1978) with M. olfersi (Wiegmann, 1836) was confirmed. Similar results were found in comparing M. petronioi Melo, Lobao&Fernandes, 1986 and M. potiuna (Muller, 1880), in which the genetic divergence placed M. petronioi within the level of intraspecific variation of M. potiuna. The taxonomic status of the genus Cryphiops, as well as theories on the origin of Macrobrachium, is also called into question.
Resumo:
Tipulomorpha (craneflies) comprise one of the largest subgroups of Diptera, but its phylogeny at different levels has been poorly explored. This study presents the most comprehensive cladistic analysis of the group ever made, with emphasis on the genera and subgenera of the subfamily Limnophilinae (Limoniidae), assumed to include some of the earliest lineages of Tipulomorpha sensu stricto and therefore important for the understanding of the early patterns in the evolution of the craneflies. Eighty-eight characters of the male imago were scored for 104 exemplar species. The most parsimonious trees were searched using implied weighting, in the framework of a sensitivity analysis with different values of k (2 to 6). The dataset based on the characters of adult male morphology showed high levels of homoplasy and yielded very incongruent and unstable phylogenetic results, which are very sensitive to changes in analytical parameters. In the preferred and most parsimonious phylogenetic hypothesis, the Pediciidae is the sister-group of all other Tipulomorpha sensu stricto. The results indicate the paraphyly of the Limoniidae with respect to the Cylindrotomidae and Tipulidae, which are considered sister-groups. The Limoniidae subfamilies Limnophilinae, Limoniinae and Chioneinae are considered non-monophyletic. The study allowed a reconstruction of the possible ground plan condition of selected features of the adult male morphology of craneflies. The genera/subgenera Epiphragma (Epiphragma), Acantholimnophila, Shannonomyia, Limnophila (Arctolimnophila), Eloeophila, Conosia, Polymera, Polymera (Polymerodes), Prionolabis, Eutonia, Phylidorea (Phylidorea), Metalimnophila, Gynoplistia (Cerozodia), Gynoplistia (Dirhipis), Nothophila, Pseudolimnophila (Pseudolimnophila), Pilaria and Ulomorpha are considered monophyletic, but in general are defined by combinations of very homoplastic character states. Two Temperate Gondwanan clades, (Tonnoirella + (Edwardsomyia + (Tinemyia + (Rhamphophila + (Nothophila))))) and ((Notholimnophila + Bergrothomyia) + (Mesolimnophila + (Chilelimnophila + Ctenolimnophila))) are recovered. The genera Limnophila, Neolimnomyia, Gynoplistia (sensu lato) and Hexatoma (sensu lato) are considered non-monophyletic. The systematic position and some morphological characters of `problematic` taxa, such as Dactylolabis, Elephantomyia, Helius and Atarba are discussed on the light of the proposed phylogeny and the analysis of the characters. Character states are richly illustrated. A detailed study of the morphology of the male genitalia is made, and several genera and species have the morphology of the male genitalia illustrated for the first time.
Resumo:
Five strains of the filamentous bacterium 'Nostocoida limicola' III were successfully isolated into pure culture from samples of activated sludge biomass from five plants in Australia. 16S rRNA gene sequence analyses showed that all isolates were members of the Planctomycetales, most closely related to Isosphaera pallida, but they differed phenotypically from this species in that they did not glide and were not thermotolerant. The ultrastructure of these 'N. limicola' III isolates was also consistent with them being Planctomycetales, in that they possessed complex intracellular membrane systems compartmentalizing the cells. However, the arrangements of these intracellular membranes differed between isolates. These data confirm that 'N. limicola' III is phylogenetically unrelated to both 'N. limicola' I and 'N. limicola' II, activated sludge filamentous bacteria which share morphological features in common with 'N. limicola' III and which have been presumed historically to be the same or very similar bacteria.
Resumo:
The phylogenetic relationships amongst 29 species of Carlia and Lygisaurus were estimated using a 726-base-pair segment of the protein-coding mitochondrial ND4 gene. Results do not support the recent resurrection of the genus Lygisaurus. Although most Lygisaurus species formed a single clade, this clade is nested within Carlia and includes Carlia parrhasius. Due to this new molecular evidence, and the paucity of diagnostic morphological characters separating the genera, Lygisaurus de Vis 1884 is re-synonymised with Carlia Gray 1845. Our analysis is also inconsistent with a previous suggestion that Lygisaurus timlowi should be removed to Menetia, a genus that is distantly related relative to outgroups used here. Intraspecific variation in Carlia is, in several instances, greater than interspecific distance. The most strikingly divergent lineages are found within C. rubrigularis, which appears to be paraphyletic, with southern populations more closely related to C. rhomboidalis than to northern populations of C. rubrigularis. The two C. rubrigularis-C. rhomboidalis lineages form part of a major polytomy at an intermediate level of divergence. Lack of resolution at this level, however, does not appear to be due to saturation or loss of phylogenetic signal. Rather, the polytomy probably reflects a period of relatively rapid diversification that occurred sometime during the Miocene.
Resumo:
Phyllurus gulbaru, sp. nov., is a highly distinct species of leaf-tailed gecko restricted to rocky rainforest of Pattersons Gorge, north-west of Townsville. The possession of a cylindrical, non-depressed, tapering original and regenerated tail separates P. gulbaru from all congeners except P. caudiannulatus. From this species P. gulbaru is separated by having a partially divided, as opposed to fully divided, rostral scale. Furthermore, the very small spinose body tubercles of P. gulbaru are in marked contrast to the large spinose body scales of P. caudiannulatus. An analysis of 729 bp of mitochondrial 12S rRNA and cytochrome b genes reveals P. gulbaru to be a deeply divergent lineage with closer affinities to mid-east Queensland congeners than the geographically neighbouring P. amnicola on Mt Elliot. In conservation terms, P. gulbaru is clearly at risk. Field surveys of Pattersons Gorge and the adjacent ranges indicate that this species is restricted to a very small area of highly fragmented habitat, of which only a small proportion receives a degree of protection in State forest. Further, there is ongoing, unchecked destruction of dry rainforest habitat by fire. Under current IUCN criteria, P. gulbaru warrants an Endangered ( B1, 2) listing.
Resumo:
Complete small subunit ribosomal RNA gene (ssrDNA) and partial (D1-D3) large subunit ribosomal RNA gene (lsrDNA) sequences were used to estimate the phylogeny of the Digenea via maximum parsimony and Bayesian inference. Here we contribute 80 new ssrDNA and 124 new lsrDNA sequences. Fully complementary data sets of the two genes were assembled from newly generated and previously published sequences and comprised 163 digenean taxa representing 77 nominal families and seven aspidogastrean outgroup taxa representing three families. Analyses were conducted on the genes independently as well as combined and separate analyses including only the higher plagiorchiidan taxa were performed using a reduced-taxon alignment including additional characters that could not be otherwise unambiguously aligned. The combined data analyses yielded the most strongly supported results and differences between the two methods of analysis were primarily in their degree of resolution. The Bayesian analysis including all taxa and characters, and incorporating a model of nucleotide substitution (general-time-reversible with among-site rate heterogeneity), was considered the best estimate of the phylogeny and was used to evaluate their classification and evolution. In broad terms, the Digenea forms a dichotomy that is split between a lineage leading to the Brachylaimoidea, Diplostomoidea and Schistosomatoidea (collectively the Diplostomida nomen novum (nom. nov.)) and the remainder of the Digenea (the Plagiorchiida), in which the Bivesiculata nom. nov. and Transversotremata nom. nov. form the two most basal lineages, followed by the Hemiurata. The remainder of the Plagiorchiida forms a large number of independent lineages leading to the crown clade Xiphidiata nom. nov. that comprises the Allocreadioidea, Gorgoderoidea, Microphalloidea and Plagiorchioidea, which are united by the presence of a penetrating stylet in their cercariae. Although a majority of families and to a lesser degree, superfamilies are supported as currently defined, the traditional divisions of the Echinostomida, Plagiorchiida and Strigeida were found to comprise non-natural assemblages. Therefore, the membership of established higher taxa are emended, new taxa erected and a revised, phylogenetically based classification proposed and discussed in light of ontogeny, morphology and taxonomic history. (C) 2003 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We use a new molecular phylogeny, developed from small and large subunit ribosomal RNA genes, to explore evolution of the digenean life cycle. Our approach is to map character states on the phylogeny and then use parsimony to infer how the character evolved. We conclude that, plesiomorphically, digenean miracidia hatched from eggs and penetrated gastropod first intermediate hosts externally. Fork-tailed cercariae were produced in rediae and emerged from the snail to be eaten directly by the teleost definitive host. These plesiomorphic characters are seen in extant Bivesiculidae. We infer that external encystment and the use of second intermediate hosts are derived from this behaviour and that second intermediate hosts have been adopted repeatedly. Tetrapod definitive hosts have also been adopted repeatedly. The new phylogeny proposes a basal dichotomy between 'Diplostomida' (Diplostomoidea, Schistosomatoidea and Brachylaimoidea) and 'Plagiorchiida' (all other digeneans). There is no evidence for coevolution between these clades and groups of gastropods. The most primitive life cycles are seen in basal Plagiorchiida. Basal Diplostomida have three-host life cycles and are associated with tetrapods. The blood flukes (Schistosomatoidea) are inferred to have derived their two-host life cycles by abbreviating three-host cycles. Diplostomida have no adult stages in fishes except by life cycle abbreviation. We present and test a radical hypothesis that the blood-fluke cycle is plesiomorphic within the Diplostomida.
Resumo:
The Entodiniomorphida are a diverse and morphologically complex group of ciliates which are symbiotic within the digestive tracts of herbivorous mammals. Previous phylogenies of the group have exclusively considered members of one family, the Ophryoscolecidae, which are symbiotic within ruminants. We sought to improve understanding of evolution within the entodiniomorphs by expanding the range of ciliates examined to include the Cycloposthiidae and Macropodimidae (symbionts of equids and macropodids respectively). The entire SSU-rRNA gene was sequenced for 3 species, Cycloposthium edentatum, Macropodinium ennuensis and M. yalanbense, and aligned against 14 litostome species and 2 postciliodesmatophoran outgroup species. Cycloposthium was consistently grouped as the sister-taxon to the Ophryoscolecidae although support for this relationship was low. This suggests that there is more evolutionary distance between the Cycloposthiidae and Ophryoscolecidae than previously inferred from studies of gross morphology, cell ontogeny or ultrastructure. In contrast, Macropodinium did not group with any of the entodiniomorphs, instead forming the sister group to the entire Trichostomatia (Entodiniomorphida + Vestibuliferida). This early diverging position for the macropodiniids is concordant with their morphology and ontogeny which failed to group the family with any of the entodiniomorph suborders. The currently accepted classification of the Trichostomatia is thus deficient and in need of review.