1000 resultados para Counting 63-500 µm fraction
Resumo:
Recent benthic foraminifera and their distribution in surface sediments were studied on a transect through the Peruvian oxygen minimum zone (OMZ) between 10 and 12°S. The OMZ with its steep gradients of oxygen concentrations allows to determine the oxygen-dependent changes of species compositions in a relatively small area. Our results from sediments of thirteen multicorer stations from 79 to 823 m water depth demonstrate that calcareous species, especially bolivinids dominate the assemblages throughout the OMZ. The depth distribution of several species matches distinct ranges of bottom water oxygen levels. The distribution pattern inferred a proxy which allows to estimate dissolved oxygen concentrations for reconstructing oxygen levels in the geological past.
Resumo:
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle-Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between V78 and V71 m composite depth extending from the Early Miocene to the latest Miocene-Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene-Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene-Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.
Resumo:
Sedimentological and faunal records from the transitional period marking the onset of widespread northern hemisphere glaciation have been investigated at Ocean Drilling Program Site 984. The late Pliocene interglacial sediments of the northeast Atlantic are carbonate rich and show evidence of vigorous bottom water circulation at intermediate water depths. Contrasting this, the late Pliocene glacial sediments are characterised by carbonate dissolution and slower bottom current velocities. Weak or "leaky" Norwegian Sea overflows, undersaturated with respect to carbonate, influenced this region during the late Pliocene glacials. The early Pleistocene pattern of intermediate water circulation appears to have changed radically in the northeast Atlantic. At this time, interglacial carbonate values and inferred bottom current velocities are low. This suggests slow-flowing, undersaturated Norwegian Sea water bathing the site. The overflow increased during the early Pleistocene interglacials as the exchange between the Atlantic and Norwegian-Greenland Seas improved. The most significant feature of the early Pleistocene glacials is the increase in inferred bottom current velocity. These changes reflect a switch in deep North Atlantic convection to shallower depths during glacial periods, possibly in a manner similar to the increasing contribution of glacial intermediate water to the North Atlantic during the late Pleistocene glacials. Our results suggest that the late Pleistocene climate variability of the North Atlantic is a pervasive feature of the late Pliocene-early Pleistocene record.