905 resultados para Cosmology,cosmic voids,mass function,astrophysics,large scale structure,theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using data from the H I Parkes All Sky Survey (HIPASS), we have searched for neutral hydrogen in galaxies in a region similar to25x25 deg(2) centred on NGC 1399, the nominal centre of the Fornax cluster. Within a velocity search range of 300-3700 km s(-1) and to a 3sigma lower flux limit of similar to40 mJy, 110 galaxies with H I emission were detected, one of which is previously uncatalogued. None of the detections has early-type morphology. Previously unknown velocities for 14 galaxies have been determined, with a further four velocity measurements being significantly dissimilar to published values. Identification of an optical counterpart is relatively unambiguous for more than similar to90 per cent of our H I galaxies. The galaxies appear to be embedded in a sheet at the cluster velocity which extends for more than 30degrees across the search area. At the nominal cluster distance of similar to20 Mpc, this corresponds to an elongated structure more than 10 Mpc in extent. A velocity gradient across the structure is detected, with radial velocities increasing by similar to500 km s(-1) from south-east to north-west. The clustering of galaxies evident in optical surveys is only weakly suggested in the spatial distribution of our H I detections. Of 62 H I detections within a 10degrees projected radius of the cluster centre, only two are within the core region (projected radius

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type Ia supernovae have been successfully used as standardized candles to study the expansion history of the Universe. In the past few years, these studies led to the exciting result of an accelerated expansion caused by the repelling action of some sort of dark energy. This result has been confirmed by measurements of cosmic microwave background radiation, the large-scale structure, and the dynamics of galaxy clusters. The combination of all these experiments points to a “concordance model” of the Universe with flat large-scale geometry and a dominant component of dark energy. However, there are several points related to supernova measurements which need careful analysis in order to doubtlessly establish the validity of the concordance model. As the amount and quality of data increases, the need of controlling possible systematic effects which may bias the results becomes crucial. Also important is the improvement of our knowledge of the physics of supernovae events to assure and possibly refine their calibration as standardized candle. This thesis addresses some of those issues through the quantitative analysis of supernova spectra. The stress is put on a careful treatment of the data and on the definition of spectral measurement methods. The comparison of measurements for a large set of spectra from nearby supernovae is used to study the homogeneity and to search for spectral parameters which may further refine the calibration of the standardized candle. One such parameter is found to reduce the dispersion in the distance estimation of a sample of supernovae to below 6%, a precision which is comparable with the current lightcurve-based calibration, and is obtained in an independent manner. Finally, the comparison of spectral measurements from nearby and distant objects is used to test the possibility of evolution with cosmic time of the intrinsic brightness of type Ia supernovae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present 547 optical redshifts obtained for galaxies in the region of the Horologium-Reticulum supercluster (HRS) using the 6 degrees field (6dF) multifiber spectrograph on the UK Schmidt Telescope at the Anglo-Australian Observatory. The HRS covers an area of more than 12 degrees x 12 degrees on the sky centered at approximately alpha = 03(h)19(m), delta = 50 degrees 02'. Our 6dF observations concentrate on the intercluster regions of the HRS, from which we describe four primary results. First, the HRS spans at least the redshift range from 17,000 to 22,500 km s(-1). Second, the overdensity of galaxies in the intercluster regions of the HRS in this redshift range is estimated to be 2.4, or delta rho/(rho) over bar similar to 1: 4. Third, we find a systematic trend of increasing redshift along a southeast-northwest spatial axis in the HRS, in that the mean redshift of HRS members increases by more than 1500 km s(-1) from southeast to northwest over a 12 degrees region. Fourth, the HRS is bimodal in redshift with a separation of similar to 2500 km s(-1) (35 Mpc) between the higher and lower redshift peaks. This fact is particularly evident if the above spatial-redshift trend is fitted and removed. In short, the HRS appears to consist of two components in redshift space, each one exhibiting a similar systematic spatial-redshift trend along a southeast-northwest axis. Lastly, we compare these results from the HRS with the Shapley supercluster and find similar properties and large-scale features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show, by examining the galaxy distributions both in redshift space and on the colour-magnitude plane, that Abell 22 exhibits a foreground wall-like structure. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey data base suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least > 40 h(-1) Mpc in length and 10 h(-1) Mpc in width at the redshift of Abell 22.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the interaction between dark sectors by considering the momentum transfer caused by the dark matter scattering elastically within the dark energy fluid. Describing the dark scattering analogy to the Thomson scattering which couples baryons and photons, we examine the impact of the dark scattering in CMB observations. Performing global fitting with the latest observational data, we find that for a dark energy equation of state w < -1, the CMB gives tight constraints on dark matter-dark energy elastic scattering. Assuming a dark matter particle of proton mass, we derive an elastic scattering cross section of sigma(D) < 3.295 x 10(-10)sigma(T) where sigma(T) is the cross section of Thomson scattering. For w > -1, however, the constraints are poor. For w = -1, sigma(D) can formally take any value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redshift Space Distortions (RSD) are an apparent anisotropy in the distribution of galaxies due to their peculiar motion. These features are imprinted in the correlation function of galaxies, which describes how these structures distribute around each other. RSD can be represented by a distortions parameter $\beta$, which is strictly related to the growth of cosmic structures. For this reason, measurements of RSD can be exploited to give constraints on the cosmological parameters, such us for example the neutrino mass. Neutrinos are neutral subatomic particles that come with three flavours, the electron, the muon and the tau neutrino. Their mass differences can be measured in the oscillation experiments. Information on the absolute scale of neutrino mass can come from cosmology, since neutrinos leave a characteristic imprint on the large scale structure of the universe. The aim of this thesis is to provide constraints on the accuracy with which neutrino mass can be estimated when expoiting measurements of RSD. In particular we want to describe how the error on the neutrino mass estimate depends on three fundamental parameters of a galaxy redshift survey: the density of the catalogue, the bias of the sample considered and the volume observed. In doing this we make use of the BASICC Simulation from which we extract a series of dark matter halo catalogues, characterized by different value of bias, density and volume. This mock data are analysed via a Markov Chain Monte Carlo procedure, in order to estimate the neutrino mass fraction, using the software package CosmoMC, which has been conveniently modified. In this way we are able to extract a fitting formula describing our measurements, which can be used to forecast the precision reachable in future surveys like Euclid, using this kind of observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mass estimation of galaxy clusters is a crucial point for modern cosmology, and can be obtained by several different techniques. In this work we discuss a new method to measure the mass of galaxy clusters connecting the gravitational potential of the cluster with the kinematical properties of its surroundings. We explore the dynamics of the structures located in the region outside virialized cluster, We identify groups of galaxies, as sheets or filaments, in the cluster outer region, and model how the cluster gravitational potential perturbs the motion of these structures from the Hubble fow. This identification is done in the redshift space where we look for overdensities with a filamentary shape. Then we use a radial mean velocity profile that has been found as a quite universal trend in simulations, and we fit the radial infall velocity profile of the overdensities found. The method has been tested on several cluster-size haloes from cosmological N-body simulations giving results in very good agreement with the true values of virial masses of the haloes and orientation of the sheets. We then applied the method to the Coma cluster and even in this case we found a good correspondence with previous. It is possible to notice a mass discrepancy between sheets with different alignments respect to the center of the cluster. This difference can be used to reproduce the shape of the cluster, and to demonstrate that the spherical symmetry is not always a valid assumption. In fact, if the cluster is not spherical, sheets oriented along different axes should feel a slightly different gravitational potential, and so give different masses as result of the analysis described before. Even this estimation has been tested on cosmological simulations and then applied to Coma, showing the actual non-sphericity of this cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filaments of galaxies are the dominant feature of modern large-scale redshift surveys. They can account for up to perhaps half of the baryonic mass budget of the Universe and their distribution and abundance can help constrain cosmological models. However, there remains no single, definitive way in which to detect, describe, and define what filaments are and their extent. This work examines a number of physically motivated, as well as statistical, methods that can be used to define filaments and examines their relative merits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis work concerns the complementary study of the abundance of galaxy clusters and cosmic voids identified in cosmological simulations, at different redshifts. In particular, we focus our analyses on the combination of the cosmological constraints derived from these probes, which can be considered statistically independent, given the different aspects of Universe density field they map. Indeed, we aim at showing the orthogonality of the derived cosmological constraints and the resulting impressive power of the combination of these probes. To perform this combination we apply three newly implemented algorithms that allow us to combine independent probes. These algorithms represent a flexible and user-friendly tool to perform different techniques for probe combination and are implemented within the environment provided by the large set of free software C++/Python CosmoBolognaLib. All the new implemented codes provide simple and flexible tools that will be soon applied to the data coming from currently available and next-generation wide-field surveys to perform powerful combined cosmological analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-high-energy cosmic rays (UHECRs), with energies above similar to 6 x 10(19) eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first deep catalog of the H I Parkes All Sky Survey (HIPASS) is presented, covering the south celestial cap (SCC) region. The SCC area is similar to2400 deg(2) and covers delta < -62&DEG;. The average rms noise for the survey is 13 mJy beam(-1). Five hundred thirty-six galaxies have been cataloged according to their neutral hydrogen content, including 114 galaxies that have no previous cataloged optical counterpart. This is the largest sample of galaxies from a blind H I survey to date. Most galaxies in optically unobscured regions of sky have a visible optical counterpart; however, there is a small population of low-velocity H I clouds without visible optical counterparts whose origins and significance are unclear. The rms accuracy of the HIPASS positions is found to be 1.'9. The H I mass range of galaxies detected is from &SIM;10(6) to &SIM;10(11) M-.. There are a large number of late-type spiral galaxies in the SCC sample (66%), compared with 30% for optically selected galaxies from the same region in the NASA Extragalactic Database. The average ratio of H I mass to B luminosity of the sample increases according to optical type, from 1.8 M-./L-. for early types to 3.2 M-./L-. for late-type galaxies. The H I-detected galaxies tend to follow the large-scale structure traced by galaxies found in optical surveys. From the number of galaxies detected in this region of sky, we predict the full HIPASS catalog will contain &SIM;5000 galaxies, to a peak flux density limit of &SIM;39 mJy (3 σ), although this may be a conservative estimate as two large voids are present in the region. The H I mass function for this catalog is presented in a subsequent paper.