972 resultados para Corticosterone Levels
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Variations in maternal care are associated with neonatal stress, hormonal disturbances and reproductive injuries during adulthood. However, the effects of these variations on sex hormones and steroid receptors during ovary development remain undetermined. This study aimed to investigate whether variations in maternal care are able to influence the hormonal profile, follicular dynamics and expression of AR, ER-alpha and ER-beta in the ovaries of UCh rat offspring. Methods: Twenty-four adult UCh rats, aged 120 days, were randomly divided into two groups (UChA and UChB) and mated. Maternal care was assessed from birth (day 0) to the 10th postnatal day (PND). In adulthood, twenty adult female rats (UChA and UChB offspring; n = 10/group), aged 120 days, were euthanized by decapitation during the morning estrus. Results: UChA females (providing high maternal care) more frequently displayed the behaviors of carrying pups, as well as licking/grooming and arched back nursing cares. Also, mothers providing high care had elevated corticosterone levels. Additionally, offspring receiving low maternal care showed the highest estrous cycle duration, increased corticosterone and 17beta-estradiol levels, overexpression of receptors ER-alpha and ER-beta, increased numbers of primordial, antral and mature follicles and accentuated granulosa cell proliferation. Conclusions: Our study suggests that low maternal care alters corticosterone and 17beta-estradiol levels, disrupting the estrous cycle and folliculogenesis and differentially regulating the expression of ER-alpha and ER-beta in the ovaries of adult rats.
Resumo:
Understanding the mechanisms responsible for mediating the effects of stress on Trypanosoma cruzi infection is crucial for determining the full impact of stress on Chagas` disease and for devising effective interventions. Dehydroepiandrosterone (DHEA), a steroid hormone synthesized from pregnenolone, is secreted by the adrenal cortex in response to stress. Although its physiologic role has not been fully defined, DHEA has been shown to modulate immune function. In the present study, we evaluated the levels of corticosterone and the ability of T. cruzi infection to modulate the expression of Th2 cytokines in Wistar rats with chronic Chagas` disease submitted to repetitive stress. The animals submitted to stress displayed enhanced levels of corticosterone as compared to control counterparts. Stress and infection triggered the most elevated concentrations of corticosterone. DHEA significantly reduced corticosterone levels for infected and stressed animals with DHEA. The infected animals displayed enhanced levels of IL-10 and IL-4 as compared to control ones. Stress combined with infection triggered the higher levels of IL-10 and IL-4. DHEA alone and combined with infection and stress significantly increased IL-10 and IL-4 levels. Then, this study might provide additional clues about factors that regulate some of the immunoregulatory aspects of T. cruzi infection and might offer new opportunities for therapeutic interventions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Exogenous administration of glucocorticoids is a widely used and efficient tool to investigate the effects of elevated concentrations of these hormones in field studies. Because the effects of corticosterone are dose and duration-dependent, the exact course of plasma corticosterone levels after exogenous administration needs to be known. We tested the performance of self-degradable corticosterone pellets (implanted under the skin) in elevating plasma corticosterone levels. We monitored baseline (sampled within 3min after capture) total corticosterone levels and investigated potential interactions with corticosteroid-binding-globulin (CBG) capacity and the endogenous corticosterone response to handling in Eurasian kestrel Falco tinnunculus and barn owl Tyto alba nestlings. Corticosterone pellets designed for a 7-day-release in rodents elevated circulating baseline total corticosterone during only 2-3 days compared to placebo-nestlings. Highest levels occurred 1-2days after implantation and levels decreased strongly thereafter. CBG capacity was also increased, resulting in a smaller, but still significant, increase in baseline free corticosterone levels. The release of endogenous corticosterone as a response to handling was strong in placebo-nestlings, but absent 2 and 8 days after corticosterone pellet implantation. This indicates a potential shut-down of the hypothalamo-pituitary-adrenal axis after the 2-3 days of elevated baseline corticosterone levels. 20 days after pellet implantation, the endogenous corticosterone response to handling of nestlings implanted with corticosterone pellets attained similar levels as in placebo-nestlings. Self-degradable pellets proved to be an efficient tool to artificially elevate circulating baseline corticosterone especially in field studies, requiring only one intervention. The resulting peak-like elevation of circulating corticosterone, the concomitant elevation of CBG capacity, and the absence of an endogenous corticosterone response to an acute stressor have to be taken into account.
Resumo:
The costs of coping with stressful situations are traded-off against other functions such as immune responses. This trade-off may explain why corticosterone secretion reduces immune reactions. Corticosterone differentially affects various immunity components. However, which component is suppressed varies between studies. It remains unclear whether the trade-off in energy, nutrition, autoimmunity or oxidative stress accounts for differential immunosuppression. In this study, we investigated whether corticosterone differentially affects the constitutive innate and humoral acquired immunity. We used barn owl nestlings, implanting 50% with a corticosterone-releasing pellet and the other 50% with a placebo pellet. To measure the effect on humoral immunity we vaccinated 50% of the corticosterone-nestlings and 50% of the placebo-nestlings with the antigens 'Tetravac' and the other 50% were injected with PBS. To assess the costs of elevated corticosterone, we measured body mass and resistance to oxidative stress. Administration of corticosterone increased corticosterone levels whereas vaccination induced the production of antibodies. Corticosterone reduced the production of antibodies, but it did not significantly affect the constitutive innate immunity. Corticosterone reduced body growth and resistance to oxidative stress. Under stressful conditions barn owl nestlings seem to keep the constitutive innate immunity, whereas elevated corticosterone levels negatively affected inducible immune responses. We found evidence that mounting a humoral immune reaction is not costly in terms of growth, but reduces the resistance to oxidative stress independently of corticosterone administration. We suggest that humoral immunity is suppressed because the risk of immunopathologies may be disproportionately high when mounting an antibody response under stressful situations.
Resumo:
The concentration of circulating glucocorticoids is regulated in response to environmental and endogenous conditions. Total circulating corticosterone, the main glucocorticoid in birds, consists of a fraction which is bound to corticosterone-binding globulins (CBG) and a free fraction. There is increasing evidence that the environment modulates free corticosterone levels through varying the concentration of CBG, but experimental evidence is lacking. To test the hypothesis that the regulation of chronic stress in response to endogenous and environmental conditions involves variation in both corticosterone release and CBG capacity, we performed an experiment with barn owl (Tyto alba) nestlings in two different years with pronounced differences in environmental conditions and in nestlings experimentally fed ad libitum. In half of the individuals we implanted a corticosterone-releasing pellet to artificially increase corticosterone levels and in the other half we implanted a placebo pellet. We then repeatedly collected blood samples to measure the change in total and free corticosterone levels as well as CBG capacity. The increase in circulating total corticosterone after artificial corticosterone administration varied with environmental conditions and with the food regime of the nestlings. The highest total corticosterone levels were found in nestlings growing up in poor environmental conditions and the lowest in ad libitum fed nestlings. CBG was highest in the year with poor environmental conditions, so that, contrary to total corticosterone, free corticosterone levels were low under poor environmental conditions. When nestlings were fed ad libitum total corticosterone, CBG and free corticosterone did not increase when administering corticosterone. These results suggest that depending on the individual history an animal experienced during development the HPA-axis is regulated differently.
Resumo:
Ornamental colours usually evolve as honest signals of quality, which is supported by the fact that they frequently depend on individual condition. It has generally been suggested that some, but not all types of ornamental colours are condition dependent, indicating that different evolutionary mechanisms underlie the evolution of multiple types of ornamental colours even when these are exhibited by the same species. Stress hormones, which negatively affect condition, have been shown to affect colour traits based on different pigments and structures, suggesting that they mediate condition dependence of multiple ornament types both among and within individuals. However, studies investigating effects of stress hormones on different ornament types within individuals are lacking, and thus, evidence for this hypothesis is scant. Here, we investigated whether corticosterone mediates condition dependence of multiple ornaments by manipulating corticosterone levels and body condition (via food availability) using a two-factorial design and by assessing their effect on multiple colour traits in male common lizards. Corticosterone negatively affected ventral melanin- and carotenoid-based coloration, whereas food availability did not affect coloration, despite its significant effect on body condition. The corticosterone effect on melanin- and carotenoid-based coloration demonstrates the condition dependence of both ornaments. Moreover, corticosterone affected ventral coloration and had no effect on the nonsexually selected dorsal coloration, showing specific effects of corticosterone on ornamental ventral colours. This suggests that corticosterone simultaneously mediates condition dependence of multiple colour traits and that it therefore accounts for covariation among them, which may influence their evolution via correlational selection.
Resumo:
Behavioral and physiological responses to unpredictable changes in environmental conditions are, in part, mediated by glucocorticoids (corticosterone in birds). In polymorphic species, individuals of the same sex and age display different heritable melanin-based color morphs, associated with physiological and reproductive parameters and possibly alternative strategies to cope with variation in environmental conditions. We examined whether the role of corticosterone in resolving the trade-off between self-maintenance and reproductive activities covaries with the size of melanin-based spots displayed on the ventral body side of male barn owls. Administration of corticosterone to simulate physiological stress in males revealed pronounced changes in their food-provisioning rates to nestlings compared to control males. Corticosterone-treated males with small eumelanic spots reduced nestling provisioning rates as compared to controls, and also to a greater degree than did corticosterone-treated males with large spots. Large-spotted males generally exhibited lower parental provisioning and appear insensitive to exogenous corticosterone suggesting that the size of the black spots on the breast feathers predicts the ability to cope with stressful situations. The reduced provisioning rate of corticosterone-treated males caused a temporary reduction in nestling growth rates but, did not affect fledgling success. This suggests that moderately elevated corticosterone levels are not inhibitory to current reproduction but rather trigger behavioral responses to maximize lifetime reproductive success.
Resumo:
Sex-dependent selection can help maintain sexual dimorphism. When the magnitude of selection exerted on a heritable sex trait differs between the sexes, it may prevent each sex to reach its phenotypic optimum. As a consequence, the benefit of expressing a sex trait to a given value may differ between males and females favouring sex-specific adaptations associated with different values of a sex trait. The level of metabolites regulated by genes that are under sex-dependent selection may therefore covary with the degree of ornamentation differently in the two sexes. We investigated this prediction in the barn owl, a species in which females display on average larger black spots on the plumage than males, a heritable ornament. This melanin-based colour trait is strongly selected in females and weakly counter-selected in males indicating sex-dependent selection. In nestling barn owls, we found that daily variation in baseline corticosterone levels, a key hormone that mediates life history trade-offs, covaries with spot diameter displayed by their biological parents. When their mother displayed larger spots, nestlings had lower corticosterone levels in the morning and higher levels in the evening, whereas the opposite pattern was found with the size of paternal spots. Our study suggests a link between daily regulation of glucocorticoids and sex-dependent selection exerted on sexually dimorphic melanin-based ornaments.
Resumo:
Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.
Resumo:
I studied the associations between migration-related physiological regulation (corticosterone) and body condition of barn swallows (Hirundo rustica L.). An additional purpose was to determine whether oxidative stress and biotransformation activity vary seasonally. Since physiological regulation, biotransformation activity and the stress involved may be important factors for body condition during migration; they may have direct effects on migration success. This in turn may influence other important life history stages, such as breeding and moult. In the thesis I used barn swallow data of the Finnish Ringing Centre (1997–2009), consisting of all juveniles ringed in the nests and recaptured from night roosts later the same autumn. Before the autumn migration in Finland I also captured, ringed and sampled barn swallows from night roosts in 2003, 2006, 2007 and 2011. Samples preceding spring migration in South Africa were collected in 2007. Juvenile barn swallows started to migrate southward in mid-August (first broods). Second broods started their migration at a younger age and almost a month later than first broods (mid-September). Barn swallows increased body mass and accumulated fat for the autumn migration. In the course of the autumn they seemed to be able to prevent the loss of energy already accumulated, since the proportional overnight mass loss, fat loss and faecal production decreased. Surprisingly, corticosterone, the major energy-regulating hormone in birds, seemed not to be involved in the fuelling process. Previous studies with warblers, sparrows and shorebirds had shown that during migration, the baseline levels of corticosterone were elevated in order to facilitate fuelling. It is possible that for Finnish barn swallows the most important fuelling place is in southern Europe, since northern and eastern populations migrate via the Balkan Peninsula. However, the adrenocortical stress response of Finnish barn swallows in good body condition was lower than that of those in poor body condition. Birds clearly suppressed the response, probably to prevent the catabolic effects of excessive corticosterone levels; birds cannot afford to lose muscle mass before migration. South African barn swallows had high levels of baseline corticosterone, but this may have been associated with the high oxidative damage and biotransformation activity of those birds. Barn swallows in spring and summer had low biotransformation activity and intermediate oxidative stress, which was probably related to breeding. Autumn birds had low biotransformation activity and oxidative stress but high redox enzyme activities in some migration-related enzymes.
Resumo:
Organisms are constantly subjected to stressful stimuli that affect numerous physiological processes and activate the hypothalamo-pituitary-adrenal (HPA) axis, increasing the release of glucocorticoids. Exposure to chronic stress is known to alter basic mechanisms of the stress response. The purpose of the present study was to compare the effect of two different stress paradigms (chronic restraint or variable stress) on behavioral and corticosterone release to a subsequent exposure to stressors. Considering that the HPA axis might respond differently when it is challenged with a novel or a familiar stressor we investigated the changes in the corticosterone levels following the exposure to two stressors: restraint (familiar stress) or forced novelty (novel stress). The changes in the behavioral response were evaluated by measuring the locomotor response to a novel environment. In addition, we examined changes in body, adrenals, and thymus weights in response to the chronic paradigms. Our results showed that exposure to chronic variable stress increased basal plasma corticosterone levels and that both, chronic restraint and variable stresses, promote higher corticosterone levels in response to a novel environment, but not to a challenge restraint stress, as compared to the control (non-stressed) group. Exposure to chronic restraint leads to increased novelty-induced locomotor activity. Furthermore, only the exposure to variable stress reduced body weights. In conclusion, the present results provide additional evidence on how chronic stress affects the organism physiology and point to the importance of the chronic paradigm and challenge stress on the behavioral and hormonal adaptations induced by chronic stress. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We examined nicotine-induced locomotion and increase in corticosterone plasma levels in adolescent and adult animals exposed to chronic restraint stress. Adolescent [postnatal day (P) 28-37] and adult (P60-67) rats were restrained for 2 hours once daily for 7 days. Three days after the last exposure to stress, the animals were challenged with saline or nicotine (0.4 mg/kg subcutaneously). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Exposure to stress did not affect the nicotine-induced locomotor- or corticosterone-activating effects in both ages.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study investigated the effect of non-ventilation of the incubator during the first 10 days of incubation and its combination with dexamethasone administration at day 16 or 18 of incubation on hatching parameters and embryo and post-hatch chick juvenile physiology. A total of 2400 hatching eggs produced by Cobb broiler breeders were used for the study. Blood samples were collected at day 18 of incubation, at internal pipping stage (IP), at the end of hatch (day-old chick) and at 7-daypost-hatch for T-3, T-4 and corticosterone levels determination. From 448 to 506 h of incubation, the eggs were checked individually in the hatcher every 2 h for pipping and hatching. The results indicate that non-ventilation during the first 10-day shortened incubation duration up to IP, external pipping (EP) and hatch, had no effect on hatchability and led to higher T-3 levels at IP but lower corticosterone levels at 7-day-post-hatch. The injection of dexamethasone at days 16 and 18 of incubation affected hatching and blood parameters in both the ventilated and non-ventilated embryos differentially and the effect was dependent on the age of the embryo. Dexamethasone increased T-3 levels and T-3/T-4 ratios but the effect was greater with early non-ventilation of eggs. Dexamethasone decreased hatchability but the effect was greater when injected at day 16 and especially in ventilated embryos. The effects of incubation protocols and dexamethasone treatments during incubation were still apparent in the hatched chicks until 7 days of age. The changes in T-3, T-4 and corticosterone levels observed in response to the early incubation conditions and late dexamethasone treatments in this study suggest that incubator ventilation or non-ventilation may influence the hypothalamic-pituitary-adrenal axis (HPA) regulation of stress levels (in terms of plasma corticosterone levels) and thyroid function in the embryo with impact on incubation duration, hatching events and early post-hatch life of the chick. Our results also suggest that some stages of development are more sensitive to dexamethasone administration as effects can be influenced by early incubation protocols. (c) 2006 Elsevier B.V. All rights reserved.