910 resultados para Correction
Resumo:
Severe spinal deformity in young children is a formidable challenge for optimal treatment. Standard interventions for adolescents, such as spinal deformity correction and fusion, may not be appropriate for young patients with considerable growth remaining. Alternative surgical options that provide deformity correction and protect the growth remaining in the spine are needed to treat this group of patients 1, 2. One such method is the use of shape memory alloy staples. We report our experience to date using video-assisted thoracoscopic insertion of shape memory alloy staples. A retrospective review was conducted of 13 patients with scoliosis, aged 7 to 13 years, who underwent video-assisted thoracoscopic insertion of shape memory staples. In our experience, video-assisted thoracoscopic insertion of shape memory alloy staples is a safe procedure with no complications noted. It is a reliable method of providing curve stability, however the follow up results to date indicate that the effectiveness of the procedure is greater in younger patients.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.
Resumo:
Prospective clinical case series of 100 patients receiving thoracoscopic anterior scoliosis correction surgery. The objective was to evaluate the relationship between clinical outcomes of thoracoscopic anterior scoliosis surgery and deformity correction using the Scoliosis Research Society (SRS) outcomes instrument questionnaire. The surgical treatment of scoliosis is quantitatively assessed in the clinic using radiographic measures of deformity correction, as well as the rib hump, but it is important to understand the extent to which these quantitative measures correlate with self-reported improvements in patients’ quality of life following surgery. A series of 100 consecutive adolescent idiopathic scoliosis patients received a single anterior rod via a thoracoscopic approach at the Mater Children’s Hospital, Brisbane, Australia. Patients completed SRS outcomes questionnaires pre-operatively and at 24 months post-operatively. There were 94 females and 6 males with a mean age of 16.1 years. The mean Cobb angle improved from 52º pre-operatively to 25º post-operatively (52%) and the mean rib hump improved from 16º to 8º (51%). The mean total SRS score for the cohort was 99.4/120. None of the deformity related parameters in the multiple regression were significant. However, patients with the lowest post-operative major Cobb angles reported significantly higher SRS scores than those with the highest post-operative Cobb angles, but there was no difference on the basis of rib hump correction. There were no significant differences between patients with either rod fractures or screw-related complications compared to those without complications.
Resumo:
As order dependencies between process tasks can get complex, it is easy to make mistakes in process model design, especially behavioral ones such as deadlocks. Notions such as soundness formalize behavioral errors and tools exist that can identify such errors. However these tools do not provide assistance with the correction of the process models. Error correction can be very challenging as the intentions of the process modeler are not known and there may be many ways in which an error can be corrected. We present a novel technique for automatic error correction in process models based on simulated annealing. Via this technique a number of process model alternatives are identified that resolve one or more errors in the original model. The technique is implemented and validated on a sample of industrial process models. The tests show that at least one sound solution can be found for each input model and that the response times are short.
Resumo:
Scoliosis is a spinal deformity that requires surgical correction in progressive cases. In order to optimize surgical outcomes, patient-specific finite element models are being developed by our group. In this paper, a single rod anterior correction procedure is simulated for a group of six scoliosis patients. For each patient, personalised model geometry was derived from low-dose CT scans, and clinically measured intra-operative corrective forces were applied. However, tissue material properties were not patient-specific, being derived from existing literature. Clinically, the patient group had a mean initial Cobb angle of 47.3 degrees, which was corrected to 17.5 degrees after surgery. The mean simulated post-operative Cobb angle for the group was 18.1 degrees. Although this represents good agreement between clinical and simulated corrections, the discrepancy between clinical and simulated Cobb angle for individual patients varied between -10.3 and +8.6 degrees, with only three of the six patients matching the clinical result to within accepted Cobb measurement error of +-5 degrees. The results of this study suggest that spinal tissue material properties play an important role in governing the correction obtained during surgery, and that patient-specific modelling approaches must address the question of how to prescribe patient-specific soft tissue properties for spine surgery simulation.
Resumo:
Background: Fusionless scoliosis surgery is an early-stage treatment for idiopathic scoliosis which claims potential advantages over current fusion-based surgical procedures. Anterior vertebral stapling using a shape memory alloy staple is one such approach. Despite increasing interest in this technique, little is known about the effects on the spine following insertion, or the mechanism of action of the staple. The purpose of this study was to investigate the biomechanical consequences of staple insertion in the anterior thoracic spine, using in vitro experiments on an immature bovine model. Methods: Individual calf spine thoracic motion segments were tested in flexion, extension, lateral bending and axial rotation. Changes in motion segment rotational stiffness following staple insertion were measured on a series of 14 specimens. Strain gauges were attached to three of the staples in the series to measure forces transmitted through the staple during loading. A micro-CT scan of a single specimen was performed after loading to qualitatively examine damage to the vertebral bone caused by the staple. Findings: Small but statistically significant decreases in bending stiffness occurred in flexion,extension, lateral bending away from the staple, and axial rotation away from the staple. Each strain-gauged staple showed a baseline compressive loading following insertion which was seen to gradually decrease during testing. Post-test micro-CT showed substantial bone and growth plate damage near the staple. Interpretation: Based on our findings it is possible that growth modulation following staple insertion is due to tissue damage rather than sustained mechanical compression of the motion segment.
Resumo:
Introduction. Surgical treatment of scoliosis is assessed in the spine clinic by the surgeon making numerous measurements on X-Rays as well as the rib hump. But it is important to understand which of these measures correlate with self-reported improvements in patients’ quality of life following surgery. The objective of this study was to examine the relationship between patient satisfaction after thoracoscopic (keyhole) anterior scoliosis surgery and standard deformity correction measures using the Scoliosis Research Society (SRS) adolescent questionnaire. Methods. A series of 100 consecutive adolescent idiopathic scoliosis patients received a single anterior rod via a keyhole approach at the Mater Children’s Hospital, Brisbane. Patients completed SRS outcomes questionnaires before surgery and again at 24 months after surgery. Multiple regression and t-tests were used to investigate the relationship between SRS scores and deformity correction achieved after surgery. Results. There were 94 females and 6 males with a mean age of 16.1 years. The mean Cobb angle improved from 52º pre-operatively to 21º for the instrumented levels post-operatively (59% correction) and the mean rib hump improved from 16º to 8º (51% correction). The mean total SRS score for the cohort was 99.4/120 which indicated a high level of satisfaction with the results of their scoliosis surgery. None of the deformity related parameters in the multiple regressions were significant. However, the twenty patients with the smallest Cobb angles after surgery reported significantly higher SRS scores than the twenty patients with the largest Cobb angles after surgery, but there was no difference on the basis of rib hump correction. Discussion. Patients undergoing thoracoscopic (keyhole) anterior scoliosis correction report good SRS scores which are comparable to those in previous studies. We suggest that the absence of any statistically significant difference in SRS scores between patients with and without rod or screw complications is because these complications are not associated with any clinically significant loss of correction in our patient group. The Cobb angle after surgery was the only significant predictor of patient satisfaction when comparing subgroups of patients with the largest and smallest Cobb angles after surgery.
Resumo:
INTRODUCTION. Following anterior thoracoscopic instrumentation and fusion for the treatment of thoracic AIS, implant related complications have been reported as high as 20.8%. Currently the magnitudes of the forces applied to the spine during anterior scoliosis surgery are unknown. The aim of this study was to measure the segmental compressive forces applied during anterior single rod instrumentation in a series of adolescent idiopathic scoliosis patients. METHODS. A force transducer was designed, constructed and retrofitted to a surgical cable compression tool, routinely used to apply segmental compression during anterior scoliosis correction. Transducer output was continuously logged during the compression of each spinal joint, the output at completion converted to an applied compression force using calibration data. The angle between adjacent vertebral body screws was also measured on intra-operative frontal plane fluoroscope images taken both before and after each joint compression. The difference in angle between the two images was calculated as an estimate for the achieved correction at each spinal joint. RESULTS. Force measurements were obtained for 15 scoliosis patients (Aged 11-19 years) with single thoracic curves (Cobb angles 47˚- 67˚). In total, 95 spinal joints were instrumented. The average force applied for a single joint was 540 N (± 229 N)ranging between 88 N and 1018 N. Experimental error in the force measurement, determined from transducer calibration was ± 43 N. A trend for higher forces applied at joints close to the apex of the scoliosis was observed. The average joint correction angle measured by fluoroscope imaging was 4.8˚ (±2.6˚, range 0˚-12.6˚). CONCLUSION. This study has quantified in-vivo, the intra-operative correction forces applied by the surgeon during anterior single rod instrumentation. This data provides a useful contribution towards an improved understanding of the biomechanics of scoliosis correction. In particular, this data will be used as input for developing patient-specific finite element simulations of scoliosis correction surgery.
Resumo:
The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.
Resumo:
Error correction is perhaps the most widely used method for responding to student writing. While various studies have investigated the effectiveness of providing error correction, there has been relatively little research incorporating teachers' beliefs, practices, and students' preferences in written error correction. The current study adopted features of an ethnographic research design in order to explore the beliefs and practices of ESL teachers, and investigate the preferences of L2 students regarding written error correction in the context of a language institute situated in the Brisbane metropolitan district. In this study, two ESL teachers and two groups of adult intermediate L2 students were interviewed and observed. The beliefs and practices of the teachers were elicited through interviews and classroom observations. The preferences of L2 students were elicited through focus group interviews. Responses of the participants were encoded and analysed. Results of the teacher interviews showed that teachers believe that providing written error correction has advantages and disadvantages. Teachers believe that providing written error correction helps students improve their proof-reading skills in order to revise their writing more efficiently. However, results also indicate that providing written error correction is very time consuming. Furthermore, teachers prefer to provide explicit written feedback strategies during the early stages of the language course, and move to a more implicit strategy of providing written error correction in order to facilitate language learning. On the other hand, results of the focus group interviews suggest that students regard their teachers' practice of written error correction as important in helping them locate their errors and revise their writing. However, students also feel that the process of providing written error correction is time consuming. Nevertheless, students want and expect their teachers to provide written feedback because they believe that the benefits they gain from receiving feedback on their writing outweigh the apparent disadvantages of their teachers' written error correction strategies.
Resumo:
Purpose: To demonstrate that relatively simple third-order theory can provide a framework which shows how peripheral refraction can be manipulated by altering the forms of spectacle lenses. Method: Third-order equations were used to yield lens forms that correct peripheral power errors, either for the lenses alone or in combination with typical peripheral refractions of myopic eyes. These results were compared with those of finite ray-tracing. Results: The approximate forms of spherical and conicoidal lenses provided by third-order theory were flatter over a moderate myopic range than the forms obtained by rigorous raytracing. Lenses designed to correct peripheral refractive errors produced large errors when used with foveal vision and a rotating eye. Correcting astigmatism tended to give large errors in mean oblique error and vice versa. When only spherical lens forms are used, correction of the relative hypermetropic peripheral refractions of myopic eyes which are observed experimentally, or the provision of relative myopic peripheral refractions in such eyes, seems impossible in the majority of cases. Conclusion: The third-order spectacle lens design approach can readily be used to show trends in peripheral refraction.
Resumo:
Voltage drop and rise at network peak and off–peak periods along with voltage unbalance are the major power quality problems in low voltage distribution networks. Usually, the utilities try to use adjusting the transformer tap changers as a solution for the voltage drop. They also try to distribute the loads equally as a solution for network voltage unbalance problem. On the other hand, the ever increasing energy demand, along with the necessity of cost reduction and higher reliability requirements, are driving the modern power systems towards Distributed Generation (DG) units. This can be in the form of small rooftop photovoltaic cells (PV), Plug–in Electric Vehicles (PEVs) or Micro Grids (MGs). Rooftop PVs, typically with power levels ranging from 1–5 kW installed by the householders are gaining popularity due to their financial benefits for the householders. Also PEVs will be soon emerged in residential distribution networks which behave as a huge residential load when they are being charged while in their later generation, they are also expected to support the network as small DG units which transfer the energy stored in their battery into grid. Furthermore, the MG which is a cluster of loads and several DG units such as diesel generators, PVs, fuel cells and batteries are recently introduced to distribution networks. The voltage unbalance in the network can be increased due to the uncertainties in the random connection point of the PVs and PEVs to the network, their nominal capacity and time of operation. Therefore, it is of high interest to investigate the voltage unbalance in these networks as the result of MGs, PVs and PEVs integration to low voltage networks. In addition, the network might experience non–standard voltage drop due to high penetration of PEVs, being charged at night periods, or non–standard voltage rise due to high penetration of PVs and PEVs generating electricity back into the grid in the network off–peak periods. In this thesis, a voltage unbalance sensitivity analysis and stochastic evaluation is carried out for PVs installed by the householders versus their installation point, their nominal capacity and penetration level as different uncertainties. A similar analysis is carried out for PEVs penetration in the network working in two different modes: Grid to vehicle and Vehicle to grid. Furthermore, the conventional methods are discussed for improving the voltage unbalance within these networks. This is later continued by proposing new and efficient improvement methods for voltage profile improvement at network peak and off–peak periods and voltage unbalance reduction. In addition, voltage unbalance reduction is investigated for MGs and new improvement methods are proposed and applied for the MG test bed, planned to be established at Queensland University of Technology (QUT). MATLAB and PSCAD/EMTDC simulation softwares are used for verification of the analyses and the proposals.