41 resultados para Coregonus
Resumo:
Parallel phenotypic divergence in replicated adaptive radiations could either result from parallel genetic divergence in response to similar divergent selec- tion regimes or from equivalent phenotypically plastic response to the repeated occurrence of contrasting environments. In post-glacial fish, repli- cated divergence in phenotypes along the benthic-limnetic habitat axis is commonly observed. Here, we use two benthic-limnetic species pairs of whitefish from two Swiss lakes, raised in a common garden design, with reciprocal food treatments in one species pair, to experimentally measure whether feeding efficiency on benthic prey has a genetic basis or whether it underlies phenotypic plasticity (or both). To do so, we offered experimental fish mosquito larvae, partially burried in sand, and measured multiple feed- ing efficiency variables. Our results reveal both, genetic divergence as well as phenotypically plastic divergence in feeding efficiency, with the pheno- typically benthic species raised on benthic food being the most efficient forager on benthic prey. This indicates that both, divergent natural selection on genetically heritable traits and adaptive phenotypic plasticity, are likely important mechanisms driving phenotypic divergence in adaptive radiation.
Resumo:
Fish occupy a range of hydrological habitats that exert different demands on locomotor performance. We examined replicate natural populations of the rainbow fishes Melanotaenia eachamensis and M. duboulayi to determine if colonization of low-velocity (lake) habitats by fish from high-velocity (stream) habitats resulted in adaptation of locomotor morphology and performance. Relative to stream conspecifics, lake fish had more posteriorly positioned first dorsal and pelvic fins, and shorter second dorsal fin bases. Habitat dimorphism observed between wild-caught fish was determined to be heritable as it was retained in M. eachamensis offspring raised in a common garden. Repeated evolution of the same heritable phenotype in independently derived populations indicated body shape divergence was a consequence of natural selection. Morphological divergence between hydrological habitats did not support a priori expectations of deeper bodies and caudal peduncles in lake fish. However, observed divergence in fin positioning was consistent with a family-wide association between habitat and morphology, and with empirical studies on other fish species. As predicted, decreased demand for sustained swimming in takes resulted in a reduction in caudal red muscle area of lake fish relative to their stream counterparts. Melanotaenia duboulayi lake fish also had slower sustained swimming speeds (U-crit) than stream conspecifics. In M. eachamensis, habitat affected U-crit of males and females differently. Specifically, females exhibited the pattern observed in M. duboulayi (lake fish had faster U-crit than stream fish), but the opposite association was observed in males (stream males had slower Ucrit than lake males). Stream M. eachamensis also exhibited a reversed pattern of sexual dimorphism in U-crit (males slower than females) relative to all other groups (males faster than females). We suggest that M. eachamensis males from streams responded to factors other than water velocity. Although replication of muscle and U,,it phenotypes across same habitat populations within and/or among species was suggestive of adaptation, the common garden experiment did not confirm a genetic basis to these associations. Kinematic studies should consider the effect of the position and base length of dorsal fins.
Change in individual growth rate and its link to gill-net fishing in two sympatric whitefish species
Resumo:
Size-selective fishing is expected to affect traits such as individual growth rate, but the relationship between the fishery-linked selection differentials and the corresponding phenotypic changes is not well understood. We analysed a 25-year monitoring survey of sympatric populations of the two Alpine whitefish Coregonus albellus and C. fatioi. We determined the fishing-induced selection differentials on growth rates, the actual change of growth rates over time, and potential indicators of reproductive strategies that may change over time. We found marked declines in adult growth rate and significant selection differentials that may partly explain the observed declines. However, when comparing the two sympatric species, the selection differentials on adult growth were stronger in C. albellus while the decline in adult growth rate seemed more pronounced in C. fatioi. Moreover, the selection differential on juvenile growth was significant in C. albellus but not in C. fatioi, while a significant reduction in juvenile growth over the last 25 years was only found in C. fatioi. Our results suggest that size-selective fishing affects the genetics for individual growth in these whitefish, and that the link between selection differentials and phenotypic changes is influenced by species-specific factors.
Resumo:
Some models of sexual selection predict that individuals vary in their genetic quality and reveal some of this variation in their secondary sexual characteristics. Alpine whitefish (Coregonus sp.) develop breeding tubercles shortly before their spawning season. These tubercles are epidermal structures that are distributed regularly along the body sides of both males and females. There is still much unexplained variation in the size of breeding tubercles within both sexes and with much overlap between the sexes. It has been suggested that breeding tubercles function to maintain body contact between the mating partners during spawning, act as weapons for defence of spawning territories, or are sexual signals that reveal aspects of genetic quality. We took two samples of whitefish from their spawning place, one at the beginning and one around the peak of spawning season. We found that females have on average smaller breeding tubercles than males, and that tubercle size partly reveals the stage of gonad maturation. Two independent full-factorial breeding experiments revealed that embryo mortality was significantly influenced by male and female effects. This finding demonstrates that the males differed in their genetic quality (because offspring get nothing but genes from their fathers). Tubercle size was negatively linked to some aspects of embryo mortality in the first breeding experiment but not significantly so in the second. This lack of consistency adds to inconsistent results that were reported before and suggests that (i) some aspects of genetic quality are not revealed in breeding tubercles while others are, or (ii) individuals vary in their signaling strategies and the information content of breeding tubercles is not always reliable. Moreover, the fact that female whitefish have breeding tubercles of significant size while males seem to have few reasons to be choosy suggests that the tubercles might also serve some functions that are not linked to sexual signaling.
Resumo:
Supportive breeding is an important tool in conservation management, but its long-term genetic consequences are not well understood. Among the factors that could affect the genetics of the offspring is sperm competition as a consequence of mixed-milt fertilizations - which is still a common practice in many hatcheries. Here, we measured and combined the relevant factors to predict the genetic consequences of various kinds of hatchery-induced sperm competition. We drew a random sample of male Coregonus zugensis (an Alpine whitefish) from a hatchery program and quantified their in vitro sperm potency by integrating sperm velocity during the first minute after activation, and their in vitro milt potency by multiplying sperm potency with milt volume and sperm cell density. We found that not controlling for sperm density and/or milt volume would, at a constant population size, decrease the variance effective number of male breeders N-em by around 40-50%. This loss would decrease with increasing population growth rates. Partial multifactorial breeding and the separate rearing of in total 799 batches of eggs revealed that neither sperm nor milt potency was significantly linked to egg survival. Sperm and milt potency was also not significantly correlated to other potential quality measures such as breeding tubercles or condition factor. However, sperm potency was correlated to male age and milt potency to male growth rate. Our findings suggest that hatchery-induced sperm competition not only increases the loss of genetic variation but may also induce artificial selection, depending on the fertilization protocol. By not equalizing milt volume in multi-male fertilization hatchery managers lose relatively more genetic variation and give fast-growing males a reproductive advantage, while equalizing milt volume reduces the loss of genetic variation and favors younger males who may have fast sperm to compensate for their subdominance at the spawning place. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Résumé : Les mécanismes de sélection sexuelle, en particulier la compétition entre mâles (sélection inter-sexuelle) et le choix des femelles (sélection intra-sexuelle), peuvent fortement influencer le succès reproducteur d'un individu, c'est-à-dire son nombre de descendants. On observe ainsi que les mâles dominants et les mâles élaborant des caractères sexuels secondaires marqués ont un succès reproducteur élevé. Toutefois, le succès reproducteur ne suffit pas pour garantir une contribution génétique élevée, parce que la fitness dépend également de la performance des descendants (c'est-à-dire de leur survie et de leur propre succès reproducteur). Si cette performance dépend en partie des gènes paternels, les males ont un avantage certain à signaler leur qualité aux femelles afin d'atteindre des taux de reproduction élevé. Ce mécanisme de signalisation est connu sous le nom de 'good genes hypothesis', toutefois très peu d'études ont clairement démontré le lien entre la qualité génétique des individus et la signalisation. De plus, la performance des descendants peut aussi dépendre des effets génétiques de compatibilité entre mâles et femelles ('compatible genes'). C'est-à-dire que certains allèles paternels n'apporteraient un avantage aux descendants qu'en combinaison avec certains allèles maternels. Nous avons déterminé, durant la période de reproduction, le statut de dominance des mâles pour deux espèces de poissons d'eau douce : la truite (Salmo trotta) et le vairon (Phoxinus phoxinus), puis nous avons évalué la relation entre le succès reproducteur et le statut de dominance et/ou la quantité de signalisation des caractères sexuels secondaires. Nous avons également fécondés artificiellement des oeufs de truites et de corégones (Coregonus palaea), en croisant chaque mâle avec chaque femelle (full-factorial breeding design). Ce type de design autorise la quantification précise des effets génétiques et permet de séparer les effets de 'good genes' et de 'compatible genes'. Cela a été fait sous différentes intensités de stress bactérien, ainsi que dans des conditions naturelles, et nous avons pu ainsi tester si certains indicateurs de qualité génétique des mâles ('good genes') étaient liés a) à la dominance et/ou b) à l'expression des caractères sexuels secondaires des mâles comme l'intensité mélanique ou la taille des tubercules sexuels. En outre, nous cherchons à savoir si la survie des descendants est liée à certaines combinaison des gènes du complexe d'histocompatibilité majeur (MHC) et/ou à la parenté génétique des parents, les deux traits étant soupçonnés d'avoir des influences génétique de compatibilité (`compatible genes') à la performance des descendants. Nous avons constaté que la dominance des mâles est directement liée à la taille et au poids des mâles (truites, vairons), mais également aux caractères sexuels secondaires (tubercules). De plus, les mâles vairons dominant ont eu un succès de fécondation plus élevés que les mâles subordonnés. Nous montrons que les truites et corégones mâles diffèrent dans leur qualité génétique, qui a été mesurée avéc la survie embryonnaire, le temps avant l'éclosion et enfin la croissance juvénile. Contrairement aux prédictions, la dominance (ou les traits indicatifs de dominance) n'était liée à la qualité génétique, dans aucun des traitements, et ne fonctionne donc pas comme indicateur de qualité. Par contre, la qualité génétique était liée aux caractères sexuels secondaires, particulièrement par la teinte mélanique chez les truites. Les embryons de truites issus de pères sombres survivaient mieux que ceux issus de pères clairs dans des environnements difficiles, de plus leur croissance était plus élevée lors de leur première année dans des conditions naturelles. La taille des juvéniles lors de leur première année est un trait important lié au succès dans la compétition pour des ressources telles qu'abri ou nourriture. De plus, les femelles truites peuvent augmenter la survie de leurs descendants en choisissant des mâles selon leur type de MHC ou selon leur degré de parenté. En outre, chez les corégones, la morphologie des tubercules sexuels ne semble pas signaler la qualité génétique. Nous avons également remarqué que l'exposition à des pathogènes non-létaux pouvait influencer la performance des alevins à court et long terme, probablement en affaiblissant leur système immunitaire. Cette thèse montre que les mâles diffèrent dans leur qualité génétique et que différents mécanismes de sélection inter- ou intra-sexuelle (par exemple la préférence pour des mâles sombres, pour des génotypes MHC ou pour des couples avec degré de parenté basse) pouvait avoir un effet positif sur la qualité des descendants, bien que cet effet génétique pouvait changer au cours du temps et entre différents environnements. Contrairement à nos attentes, le résultat de la compétition intra-sexuelle (la hiérarchie de dominance entre mâles) n'était pas lié à la qualité génétique individuelle ('good genes'). Dans ce sens, ce travail permet également de contribuer à l'explication du fait que la sélection sexuelle, de par sa forte sélection directionnelle, ne conduit pas à la diminution de la variance génétique, mais plutôt à la maintenance du polymorphisme génétique. Summary : Sexual selection mechanisms, especially male-male competition (inteasexual selection) and female mate choice (inteasexual selection), can strongly influence individual mating success, often resulting in dominant males and males with elaborate secondary sexual characters having higher fertilisation success. However, siring a high number of offspring alone does not guarantee high individual fitness, as fitness does also strongly depend on offspring performance (i.e. survival, fecundity). If this superiority in offspring performance depends on paternally inherited genes, the fathers are expected to signal this potential indirect benefit to females in order to attain high mating rates. This mechanism is also known as the 'good genes' hypothesis of sexual selection but until now most studies failed to conclusively show the relation of an individual genetic quality and its potential signalling traits. Further, offspring performance could also depend on compatible gene effects. These are alleles that increase offspring performance only in combination with other specific alleles. We first determined male dominance status from intrasexual competition during mating season for brown trout (Salmo trutta) and European minnows (Phoxinus phoxinus). For minnows we additionally checked if dominance and/or secondary sexual traits were linked to fertilisation success. Further, we artificially fertilised brown trout and alpine whitefish (Coregonus palaea) eggs, following full factorial breeding designs, enabling to properly measure `good gene' and `compatible gene' effects on offspring performance. This was done under different intensities of natural stressors, as well as under natural conditions. This procedure allowed us to test if the obtained male genetic quality measures (good genes effects) were indicated by a) dominance or lay traits linked to dominance and/or by b) secondary sexual characteristics such as melanin-based male skin darkness or breeding tubercles. Further, we investigated if offspring survival was linked to the MHC (major histocompatibility complex) gene combinations and/or to the parental genetic relatedness, as both traits were shown to have 'compatible gene' effects that may influence offspring performance. We found that male dominance in intrasexual competition was positively linked to body size, body weight (brown trout, minnows) but also to elaborate secondary sexual characteristics (breeding tubercles in minnows). Further, dominant minnow males did have an increased fertilisation success compared to subordinate ones. We show that brown trout and whitefish males do usually differ in their genetic quality, which was measured as embryo survival, hatching timing and finally as juvenile growth. Contrary to prediction male dominance or dominance indicating traits do not function as a quality signal as they were not linked to genetic quality. This result was constant when measuring genetic quality under different levels of natural stressors and under natural conditions (brown trout). On the other hand genetic quality seemed to be indicated by secondary sexual characteristics, specifically by melanin-based skin darkness in brown trout as brown trout embryos sired by darker fathers had increased survival rates when raised under harsh conditions and. they grew larger as juveniles after one year of growth in a natural stream, which is an important trait influencing success of juveniles in competition for hidings, food and other resources. Furthermore, brown trout females may increase the survival of their embryos when choosing males according to their MHC genotypes or to the general genetic relatedness between themselves and their potential mates. In whitefish on the other hand breeding tubercle morphology did not seem to signal genetic quality. Eventually, we saw that anon-lethal exposure to pathogens might influence short term and long term offspring performance probably by weakening an exposed individual's immune system. This thesis shows that males usually differ in their genetic quality and that different inter- or intrasexual selection mechanisms (e.g. mate selection favouring dark males, preference for MHC genotype combinations or for unrelated mates) may have strong positive effects on genetically dependent offspring performance but that such genetìc effects can change over time and environments. In contrast to our a priori expectations, the outcome of intrasexual selection, namely male dominance hierarchies, with dominant males often having high fertilisation success, was not linked to individual genetic quality (`good genes'). In this sense the present thesis may also be a helpful contribution to understand why sexual selection does not lead to rapid loss of genetic variation by strong directional selection but could even lead to the maintenance of genetic variation in natural populations.
Resumo:
It is often assumed that maternal and paternal contributions to offspring phenotype change over the lifetime of an individual. However, studies on parental effects typically suffer from the problems that heritabilities and maternal environmental effects are difficult to separate, and that both may depend on environmental factors and developmental stage. In order to experimentally disentangle maternal from paternal contributions and the likely effects of developmental stage from ecological effects, we sampled a natural population of the whitefish Coregonus palaea, used gametes for full-factorial in vitro fertilizations, raised over 10000 of the resulting offspring singly at controlled conditions, and exposed them at different points during embryonic development to one of two strains of Pseudomonas fluorescens that differed in their virulence characteristics (only one caused mortality, while both delayed hatching and reduced growth). Vulnerability to infection increased markedly over embryo development. This change coincided with a distinct shift in the importance of maternal to additive genetic effects on survival. Timing of exposure also affected the variance components for hatching time and larval length, but in a less consistent direction than the variance components for mortality. No significant genetic variation was found for any reaction norms across time points of exposure, indicating a uniformity among genotypes in how susceptibility changed over development. Phenotypes were also typically correlated across time points, which could constrain the evolution of the reaction norms. Our experiment demonstrates that the relative maternal and paternal contributions to susceptibility to an infection, and hence the evolutionary potential to respond to pathogen-induced selection, depends not only on the kind of pathogenic stress but also on the timing of the challenge.
Resumo:
Les changements environnementaux, tels la température ou les maladies infectieuses, peuvent influencer l'évolution en induisant de la sélection, mais ceci à la seule condition qu'il y ait assez de diversité génétique pour les traits en question ou pour l'expression plastique de ces traits. Au cours cette thèse, nous avons étudié l'effet de potentielles pressions environnementales sur différents phénotypes de trois représentants des sous familles des salmonidés: l'ombre commun (Thymallus thymallus; Thymallinae), la truite de rivière {Salmo trutta; Salmoninae) et le corégone Coregonus palaea (Coregoninae). Les salmonidés se prêtent particulièrement bien à ce type d'expériences car étant hautement sensibles aux conditions environnementales, ils montrent une large variabilité dans leurs traits morphologiques, comportementaux ainsi que d'histoire de vie, tout en bénéficiant d'un large intérêt général. Nous avons testé si le sexe de l'ombre commun pouvait être modifié par la température, ce qui pourrait ainsi expliquer un changement abrupte de sex ratio observé dans l'une des plus grandes populations de Suisse. Nous n'avons trouvé aucun indice permettant de conclure que la température puisse induire ce changement chez l'ombre commun ou chez la truite de rivière. De plus nous avons étudié la plasticité de développement ainsi que d'éclosion, et avons observé des différences entre familles ainsi qu'entre populations. Alors que ces différences comportementales entre populations suggéraient une adaptation aux conditions environnementales locales, cette prédiction n'a pas été confirmée par une expérience de transplantation réciproque d'embryons entre cinq rivières de la même région. Cette étude a montré que les embryons ne survivaient pas mieux dans leur rivière d'origine, indiquant donc une absence d'adaptation locale. Nous avons aussi montré que la mortalité embryonnaire était influencée autant par des "bons gènes" que par des "gènes compatibles", que la qualité des mâles pouvait être signalée par leur coloration, et que le fait d'élever des poissons dans une pisciculture pouvait aboutir a des relations contre-intuitives entre la coloration des mâles et la qualité de leur jeunes. Nos résultats contribuent ainsi à une meilleure compréhension de l'effet de diverses pressions environnementales sur la morphologie, le comportement ou les traits d'histoire de vie chez les salmonidés. - Environmental changes, such as changes in temperatures or infection levels, can induce selection and drive evolution if there is sufficient genetic variation for the traits or the plasticity in trait expression. In this thesis, we investigated the influence of potential environmental stressors on various phenotypes in representatives of the three salmonid subfamilies: the European grayling (Thymallus thymallus; Thymallinae), the brown trout (,Salmo trutta; Salmoninae), and the whitefish Coregonus palaea (Coregoninae). Salmonids are ideal study species, as they seem sensitive to changing environmental conditions, show considerable variability in morphological, behavioral, and life history traits, and are of broad public interest. We investigated whether temperature-induced sex reversal could explain the sex-ratio distortion found in one of Switzerland's largest grayling populations. We found no evidence of temperature-induced sex reversal in either graylings or brown trout. We also examined plasticity in embryo development and the timing of hatching. We found variation at the level of family and population. Although behavioral differences between populations suggested adaptation to local environmental conditions, no indications of local adaptation could be found in reciprocal transplant experiments carried out over five rivers in the same region. We also demonstrate that embryo development and viability is influenced by 'good genes' and 'compatible genes', that the genetic quality of sires can be signaled by their grey coloration, and that raising larvae in a hatchery environment can produce counter-intuitive relationships between male phenotypes and offspring viability. Our results contribute to the understanding of how changing environmental conditions affect the phenotypes and the heritability of early life-history traits in salmonids.
Resumo:
Size-selective fishing, environmental changes and reproductive strategies are expected to affect life-history traits such as the individual growth rate. The relative contribution of these factors is not clear, particularly whether size-selective fishing can have a substantial impact on the genetics and hence on the evolution of individual growth rates in wild populations. We analysed a 25-year monitoring survey of an isolated population of the Alpine whitefish Coregonus palaea. We determined the selection differentials on growth rate, the actual change of growth rate over time and indicators of reproductive strategies that may potentially change over time. The selection differential can be reliably estimated in our study population because almost all the fish are harvested within their first years of life, i.e. few fish escape fishing mortality. We found a marked decline in average adult growth rate over the 25 years and a significant selection differential for adult growth, but no evidence for any linear change in reproductive strategies over time. Assuming that the heritability of growth in this whitefish corresponds to what was found in other salmonids, about a third of the observed decline in growth rate would be linked to fishery-induced evolution. Size-selective fishing seems to affect substantially the genetics of individual growth in our study population.
Resumo:
Juvenile or adult fish can alter their behaviour and rely on an innate and adaptive immune system to avoid/counteract pathogens, while fish embryos have to depend on egg characteristics and may be partly protected by their developing immune system that is building up from a certain age on. We developed an infection protocol that allows testing the reaction of individual whitefish embryos (Coregonus palaea) to repeated exposures to Pseudomonas fluorescens, an opportunistic bacterial fish pathogen. We used a full-factorial in vitro breeding design to separately test the effects of paternal and maternal contributions to the embryos' susceptibility to different kinds of pathogen exposure. We found that a first non-lethal exposure had immunosuppressive effects: pre-exposed embryos were more susceptible to future challenges with the same pathogen. At intermediate and high levels of pathogen intensity, maternal effects turned out to be crucial for the embryos' tolerance to infection. Paternal (i.e. genetic) effects played a significant role at the strongest level of infection, i.e. the embryos' own genetics already explained some of the variation in embryo susceptibility. Our findings suggest that whitefish embryos are largely protected by maternally transmitted substances, but build up some own innate immunocompetence several days before hatching.
Resumo:
Animals and plants are associated with symbiotic microbes whose roles range from mutualism to commensalism to parasitism. These roles may not only be taxon-specific but also dependent on environmental conditions and host factors. To experimentally test these possibilities, we drew a random sample of adult whitefish from a natural population, bred them in vitro in a full-factorial design in order to separate additive genetic from maternal environmental effects on offspring, and tested the performance of the resulting embryos under different environmental conditions. Enhancing the growth of symbiotic microbes with supplemental nutrients released cryptic additive genetic variance for viability in the fish host. These effects vanished with the concurrent addition of the water mould Saprolegnia ferax. Our findings demonstrate that the heritability of host fitness is environment-specific and critically depends on the interaction between symbiotic microbes.
Resumo:
Some models of sexual selection predict that individuals vary in their genetic quality and reveal some of this variation in their secondary sexual characteristics. Alpine whitefish (Coregonus sp.) develop breeding tubercles shortly before their spawning season. These tubercles are epidermal structures that are distributed regularly along the body sides of both males and females. There is still much unexplained variation in the size of breeding tubercles within both sexes and with much overlap between the sexes. It has been suggested that breeding tubercles function to maintain body contact between the mating partners during spawning, act as weapons for defence of spawning territories, or are sexual signals that reveal aspects of genetic quality. We took two samples of whitefish from their spawning place, one at the beginning and one around the peak of spawning season. We found that females have on average smaller breeding tubercles than males, and that tubercle size partly reveals the stage of gonad maturation. Two independent full-factorial breeding experiments revealed that embryo mortality was significantly influenced by male and female effects. This finding demonstrates that the males differed in their genetic quality (because offspring get nothing but genes from their fathers). Tubercle size was negatively linked to some aspects of embryo mortality in the first breeding experiment but not significantly so in the second. This lack of consistency adds to inconsistent results that were reported before and suggests that (i) some aspects of genetic quality are not revealed in breeding tubercles while others are, or (ii) individuals vary in their signaling strategies and the information content of breeding tubercles is not always reliable. Moreover, the fact that female whitefish have breeding tubercles of significant size while males seem to have few reasons to be choosy suggests that the tubercles might also serve some functions that are not linked to sexual signaling.
Resumo:
Summary : Due to anthropogenic impacts and natural fluctuations, fish usually have to cope with constantly changing and often hostile environments. Whereas adult fish have various possibilities to counteract unfavourable environmental conditions, embryos have much fewer options. Besides by their developing immune system, they are protected by the egg envelopes and several immune substances provided by their mothers. In addition to this, they may also adjust their hatching timing in reaction to various risks. However, individuals may vary in their defensive potential. This variation may be either based on their genetics and/or on differential maternal investments and may be dependent on the experienced stress. Nevertheless, in fish, the impact of such parental contributions on embryo and/or juvenile viability is still poorly investigated. The main objective of this thesis was to investigate the importance of paternal (i.e. genetic) and maternal (i.e. genetic + egg investment) contributions to offspring viability under different environmental conditions and at different life stages. In order to investigate this, we used gametes of various salmonids for in vitro fertilisation experiments based on full-factorial breeding designs. The individual studies are summarised in the following chapters: In the first chapter, we tested the effectiveness of the embryonic immune system in Lake whitefish (Coregonus palaea). Namely, we investigated paternal and maternal contributions to the embryos' tolerance to different kinds of pathogen exposure. Additionally, we tested whether an early sub-léthal exposure has a positive or a negative effect on an embryo's susceptibility to later pathogen exposures with the same pathogen. We found that pre-challenged embryos were more susceptible to future challenges. Moreover, pathogen susceptibility was dependent on maternal investments and/or the embryos' own genetics, depending on the challenge level. Chapter 2 summarises a similar study with brown trout (Salmo trutta). In addition to the previously described investigations, we analysed if genetic effects on offspring viability are mediated either by parental MHC genotypes or relatedness based on neutral microsatellite markers, and we tested if males signal their genetic quality either by their body size or their melanin-based skin colouration. We found that embryo survival was lower at higher stress levels and dependent on the embryos' genetics. Addirionally, parents with similar and/or, very common MHC genotypes had higher offspring viabilities. Finally, darker males produced more viable offspring. In the first two chapters we investigated the embryos' defensive potential based on their immune system, i.e. their pathogen tolerance. In chapter 3 we investigate whether hatching timing of Lake whitefìsh (C. palaea) is dependent on parental contributions and/or on pathogen pressure, and whether there are parental-environmental interactions. We found that whitefish embryos hatch earlier under increasing pathogen pressure. Moreover, hatching timing was affected by embryo genetics and/or maternally provided resources, but the magnitude of the effect was dependent on the pathogen. pressure. We also found a significant paternal-environmental interaction, indicating that the hatching efficiency of a certain sib group is dependent on the pathogen environment. Chapter 4 describes an analogous study with brown trout (S. trutta), with similar findings. In the former chapters, we only looked at offspring performance during the embryonic period, and only under semi-natural conditions. In chapter 5 we now test the performance and viability of embryonic and juvenile brown trout (S. trutta) under natural conditions. To measure embryo viability, we put them in brood boxes, buried them in the gravel of a natural river, and analysed survival after several months. To investigate juvenile survival and performance, wé reared embryos under different stress levels in the laboratory and subsequently released the resulting hatchlings in to a closed river section. Juvenile size and survival was then determined one year later. Additionally, we investigated if sires differ in their genetic quality, determined by embryo and juvenile survival as well as juvenile size, and if they signal their quality by either body size or melanin-based body darkness. We found hat juvenile size was dependent on genetic effects and on maternal investment, whereas this was neither the case for embryo nor for juvenile survival. Additionally, we found that offspring of darker males grew larger, and larger juveniles had also an increased survival. Finally, we found acarry-over effect of the early non-lethal challenge: exposing embryos to higher stress levels resulted in smaller juveniles. To evaluate the long-term performance of differently treated groups, mark-recapture studies are inevitable. For this purpose, effective mass-marking techniques are essential. In chapter 6 we tested the suitability of the fluorescent pigment spray marking method for the mass marking of European graylings (Thymallus thymallus), with very promising results. Our in vitro fertilisation studies on whitefish may reveal new insights on potential genetic benefits of mate choice, but the mating system of whitefish under natural conditions is still poorly investigated. In order to study this, we installed underwater cameras at the spawning place of a Coregonus suidteri population, recorded the whole mating period and subsequently analysed the recordings. Confirmations of previous findings as well as exciting new observations are listed and discussed in chapter 7. Dus aux impacts anthropogéniques et aux fluctuations naturelles, les poissons doivent faire face à des environnements en perpétuel changement. Ces changements font que les poissons doivent s'adapter à de nouvelles situations, souvent hostiles pour eux. Les adultes ont différentes possibilités d'échapper à un environnement peu favorable, ce n'est par contre pas le cas des embryons. Les embryons sont protégés d'une part par leur système immunitaire en développement, d'autre part, par la coquille de l'eeuf et différentes substances immunitaires fournies par leur mère. De plus, ils sont capables d'influencer leur propre date d'éclosion en réponse à différents facteurs de stress. Malgré tout, les individus varient dans leur capacité à se défendre. Cette variation peut être basé sur des facteurs génétiques et/ou sur des facteurs maternels, et est dépendante du stress subi. Néanmoins, chez les poissons, l'impact de telles contributions parentales sur la survie d'embryons et/ou juvéniles est peu étudié. L'objectif principal de cette thèse a été d'approfondir les connaissances sur l'importance de la contribution paternelle (c.a.d. génétique) et maternelle (c.a.d. génétique + investissement dans l'oeuf) sur la survie des jeunes dans différentes conditions expérimentales et stades de vie. Pour faire ces analyses, nous avons utilisé des gamètes de divers salmonidés issus de croisements 'full-factorial'. Les différentes expériences sont résumées dans les chapitres suivants: Dans le premier chapitre, nous avons testé l'efficacité du système immunitaire des embryons chez les corégones (Coregonus palea). Plus précisément nous avons étudié la contribution paternelle et maternelle à la tolérance des embryons à différents niveaux de stress pathogène. Nous avons aussi testé, si une première exposition non létale à un pathogène avait un effet positif ou négatif sur la susceptibilité d'un embryon a une deuxième exposition au même pathogène. Nous avons trouvé que des embryons qui avaient été exposés une première fois étaient plus sensibles au pathogène par la suite. Mais aussi que la sensibilité au pathogène était dépendante de l'investissement de la mère et/ou des gènes de l'embryon, dépendamment du niveau de stress. Le deuxième chapitre résume une étude similaire avec des truites (Salmo truffa). Nous avons examiné, si la survie des jeunes variait sous différentes intensités de stress, et si la variance observée était due aux gènes des parents. Nous avons aussi analysé si les effets génétiques sur la survie des juvéniles étaient dus au MHC (Major Histocompatibility Complex) ou au degré de parenté des parents. De plus, nous avons analysé si les mâles signalaient leur qualité génétique par la taille du corps ou par leur coloration noire, due à la mélanine. On a trouvé que la survie des embryons était plus basse quand le niveau de stress était plus haut mais que la variation restait dépendante de la génétique des embryons. De plus, les parents avec des MHC similaires et/ou communs avaient des embryons avec une meilleure survie. Par contre, des parents avec un degré de parenté plus haut produisent des embryons avec une survie plus mauvaise. Finalement nous avons montré que les mâles plus foncés ont des embryons qui survivent mieux, mais que la taille des mâles n'a pas d'influence sur la survie de ces mêmes embryons. Dans les deux premiers chapitres, nous avons étudié le potentiel de défense des embryons basé sur leur système immunitaire, c.a.d. leur tolérance aux pathogènes. Dans le troisième chapitre, nous nous intéressons à la date d'éclosion des corégones (C. palea), pour voir si elle est influencée par les parents ou par la pression des pathogènes, et si il y a une interaction entre ces deux facteurs. Nous avons trouvé que les jeunes naissent plus rapidement lorsque la pression en pathogènes augmente. La date d'éclosion est influencée par la génétique des embryons et/ou l'investissement des parents, mais c'est la magnitude des effets qui est dépendante de la pression du pathogène. Nous avons aussi trouvé une interaction entre l'effet paternel et l'environnement, ce qui indique que la rapidité d'éclosion de certains croisements est dépendante des pathogènes dans l'environnement. Le chapitre 4 décrit une étude analogue avec de truites (S. truffa), avec des résultats sitzimilaires. Dans les précédents chapitres nous nous sommes uniquement concentrés sur les performances des jeunes durant leur stade embryonnaire, et seulement dans des conditions semi naturelles. Dans le chapitre 5 nous testons la performance et la viabilité des embryons et de juvéniles de truites (S. truffa) dans des conditions naturelles. Nous avons trouvé que la taille des juvéniles était dépendante d'effets génétiques et de l'investissement maternel, mais ceci n'était ni les cas pour les survie des embryons et des juvéniles. De plus, nous avons trouvé que les jeunes des mâles plus foncés devenaient plus grands et que les grands ont un meilleur taux de survie. Finalement nous avons trouvé un 'carry-over effect' d'une première exposition non létale à un pathogène: exposer des embryons à des plus hauts niveaux de stress donnait des juvéniles plus petits. Pour évaluer la performance à long terme de groupes traités dé manières différentes, une méthode de marquage-recapture est inévitable. Pour cette raison, des techniques de marquage en masse sont nécessaires. Dans le chapitre 6, nous avons testé l'efficacité de la technique `fluorescent pigment spray marking' pour le marquage en masse de l'Ombre commun (Thymallus thymallus), avec des résultats très prometteurs. Les études de fertilisations in vitro avec les corégones nous donnent une idée du potentiel bénéfice génétique que représente la sélection d'un bon partenaire, même si le système d'accouplement des corégones en milieu naturel reste peu connu. Pour combler cette lacune, nous avons installé des caméras sous-marines autour de la frayère d'une population de corégones (C. suidteri), nous avons enregistré toute la période de reproduction et nous avons analysé les données par la suite. Ainsi, nous avons été capables de confirmer bien des résultats trouvés précédemment, mais aussi de faire de nouvelles observations. Ces résultats sont reportés dans le septième chapitre, où elles sont comparées avec des observations antérieures.
Resumo:
La pression exercée par les activités humaines menace pratiquement tous les écosystèmes aquatiques du globe. Ainsi, sous l'effet de divers facteurs tels que la pollution, le réchauffement climatique ou encore la pêche industrielle, de nombreuses populations de poissons ont vu leurs effectifs chuter et divers changements morphologiques ont été observés. Dans cette étude, nous nous sommes intéressés à une menace particulière: la sélection induite par la pêche sur la croissance des poissons. En effet, la génétique des populations prédit que la soustraction régulière des individus les plus gros peut entraîner des modifications rapides de certains traits physiques comme la croissance individuelle. Cela a par ailleurs été observé dans de nombreuses populations marines ou lacustres, dont les populations de féras, bondelles et autres corégones des lacs suisses. Toutefois, malgré un nombre croissant d'études décrivant ce phénomène, peu de plans de gestion en tiennent compte, car l'importance des effets génétiques liés à la pêche est le plus souvent négligée par rapport à l'impact des changements environnementaux. Le but premier de cette étude a donc été de quantifier l'importance des facteurs génétiques et environnementaux. Dans le premier chapitre, nous avons étudié la population de palée du lac de Joux (Coregonus palaea). Nous avons déterminé les différentiels de sélection dus à la pêche, c'est-à-dire l'intensité de la sélection sur le taux de croissance, ainsi que les changements nets de croissance au cours du temps. Nous avons observé une baisse marquée de croissance et un différentiel de sélection important indiquant qu'au moins 30% de la diminution de croissance observée était due à la pression de sélection induite par la pêche. Dans le deuxième chapitre, nous avons effectué les mêmes analyses sur deux espèces proches du lac de Brienz (C. albellus et C. fatioi) et avons observé des effets similaires dont l'intensité était spécifique à chaque espèce. Dans le troisième chapitre, nous avons analysé deux autres espèces : C. palaea et C. confusus du lac de Bienne, et avons constaté que le lien entre la pression de sélection et la diminution de croissance était influencé par des facteurs environnementaux. Finalement, dans le dernier chapitre, nous avons étudié les effets potentiels de différentes modifications de la taille des mailles des filets utilisés pour la pêche à l'aide de modèles mathématiques. Nous concluons que la pêche a un effet génétique non négligeable (et donc peu réversible) sur la croissance individuelle dans les populations observée, que cet effet est lié à la compétition pour la nourriture et à la qualité de l'environnement, et que certaines modifications simples de la taille des mailles des filets de pêche pourraient nettement diminuer l'effet de sélection et ainsi ralentir, voir même renverser la diminution de croissance observée.