996 resultados para Coral mortality


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The life history strategies of massive Porites corals make them a valuable resource not only as key providers of reef structure, but also as recorders of past environmental change. Yet recent documented evidence of an unprecedented increase in the frequency of mortality in Porites warrants investigation into the history of mortality and associated drivers. To achieve this, both an accurate chronology and an understanding of the life history strategies of Porites are necessary. Sixty-two individual Uranium–Thorium (U–Th) dates from 50 dead massive Porites colonies from the central inshore region of the Great Barrier Reef (GBR) revealed the timing of mortality to have occurred predominantly over two main periods from 1989.2 ± 4.1 to 2001.4 ± 4.1, and from 2006.4 ± 1.8 to 2008.4 ± 2.2 A.D., with a small number of colonies dating earlier. Overall, the peak ages of mortality are significantly correlated with maximum sea-surface temperature anomalies. Despite potential sampling bias, the frequency of mortality increased dramatically post-1980. These observations are similar to the results reported for the Southern South China Sea. High resolution measurements of Sr/Ca and Mg/Ca obtained from a well preserved sample that died in 1994.6 ± 2.3 revealed that the time of death occurred at the peak of sea surface temperatures (SST) during the austral summer. In contrast, Sr/Ca and Mg/Ca analysis in two colonies dated to 2006.9 ± 3.0 and 2008.3 ± 2.0, suggest that both died after the austral winter. An increase in Sr/Ca ratios and the presence of low Mg-calcite cements (as determined by SEM and elemental ratio analysis) in one of the colonies was attributed to stressful conditions that may have persisted for some time prior to mortality. For both colonies, however, the timing of mortality coincides with the 4th and 6th largest flood events reported for the Burdekin River in the past 60 years, implying that factors associated with terrestrial runoff may have been responsible for mortality. Our results show that a combination of U–Th and elemental ratio geochemistry can potentially be used to precisely and accurately determine the timing and season of mortality in modern massive Porites corals. For reefs where long-term monitoring data are absent, the ability to reconstruct historical events in coral communities may prove useful to reef managers by providing some baseline knowledge on disturbance history and associated drivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The health and continued existence of coral reef ecosystems are threatened by an increasing array of environmental and anthropogenic impacts. Coral disease is one of the prominent causes of increased mortality among reefs globally, particularly in the Caribbean. Although over 40 different coral diseases and syndromes have been reported worldwide, only a few etiological agents have been confirmed; most pathogens remain unknown and the dynamics of disease transmission, pathogenicity and mortality are not understood. Causal relationships have been documented for only a few of the coral diseases, while new syndromes continue to emerge. Extensive field observations by coral biologists have provided substantial documentation of a plethora of new pathologies, but our understanding, however, has been limited to descriptions of gross lesions with names reflecting these observations (e.g., black band, white band, dark spot). To determine etiology, we must equip coral diseases scientists with basic biomedical knowledge and specialized training in areas such as histology, cell biology and pathology. Only through combining descriptive science with mechanistic science and employing the synthesis epizootiology provides will we be able to gain insight into causation and become equipped to handle the pending crisis. One of the critical challenges faced by coral disease researchers is to establish a framework to systematically study coral pathologies drawing from the field of diagnostic medicine and pathology and using generally accepted nomenclature. This process began in April 2004, with a workshop titled Coral Disease and Health Workshop: Developing Diagnostic Criteria co-convened by the Coral Disease and Health Consortium (CDHC), a working group organized under the auspices of the U.S. Coral Reef Task Force, and the International Registry for Coral Pathology (IRCP). The workshop was hosted by the U.S. Geological Survey, National Wildlife Health Center (NWHC) in Madison, Wisconsin and was focused on gross morphology and disease signs observed in the field. A resounding recommendation from the histopathologists participating in the workshop was the urgent need to develop diagnostic criteria that are suitable to move from gross observations to morphological diagnoses based on evaluation of microscopic anatomy. (PDF contains 92 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth parameters and mortality rates were estimated from length-frequency data sampled in 1982, using the FiSAT software, for three coral reef fish species, the surgeon fish (Ctenochaetus striatus), the damselfish (Stegastes nigricans) and the squirrel fish (Sargocentron microstoma) in Tiahura Reef, Moorea Island, French Polynesia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral bleaching and subsequent mortality represent a major threat to the future health and productivity of coral reefs. However a lack of reliable data on occurrence, severity and other characteristics of bleaching events hampers research on the causes and consequences of this important phenomenon. This article describes a global protocol for monitoring coral bleaching events, which addresses this problem and can be used by people with different levels of expertise and resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple cohort model was used as the basis for selecting the appropriate periodicity and number of separate unit areas in a rotating harvest scheme for a sedentary species, the red coral, Corallium rubrum, in the General Fisheries Management Council for the Mediterranean area. The rotation period in years, and hence the minimum number of unit areas involved, was determined on the basis of the time to maximum biomass by a simple calculation of the yield-per-recruit type, requiring a knowledge of natural mortality and growth rates. Other criteria may be more important, however, and in general for a long-lived species, will result in shorter rotation periods. These criteria may include economic factors, criteria based on the preferred size or quality of product, or criteria that take into account the cumulative risk of illegal fishing of closed areas with time, hence the growing cost of enforcement as harvestable product accumulates. For red coral, although maximum biomass is predicted to be reached after some 15-44 years, the above considerations suggest that a rotation period ofsome 9-15 years would be close to optimal, taking into account a range ofthe above considerations. This article discusses the relative merits of rotating harvest schemes in contrast to quota management for sedentary and semi-sedentary resources or geographically isolated substocks ofa mobile resource, and concludes that this approach may have considerable potential as an alternative approach to resource management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The rising temperature of the world’s oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers’ field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch’s Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific and anecdotal observations during recent decades have suggested that the structure and function of the coral reef ecosystems around St. John, U.S. Virgin Islands have been impacted adversely by a wide range of environmental stressors. Major stressors included the mass die-off of the long-spined sea urchin (Diadema antillarum) in the early 1980s, a series of hurricanes (David and Frederick in 1979, and Hugo in 1989), overfishing, mass mortality of Acropora species and other reef-building corals due to disease and several coral bleaching events. In response to these adverse impacts, the National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) collaborated with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around the island from 2001 to 2012. This 13-year monitoring effort, known as the Caribbean Coral Reef Ecosystem Monitoring Project (CREM), was supported by the NOAA Coral Reef Conservation Program as part of their National Coral Reef Ecosystem Monitoring Program. This technical memorandum contains analysis of nine years of data (2001-2009) from in situ fish belt transect and benthic habitat quadrat surveys conducted in and around the Virgin Islands National Park (VIIS) and the Virgin Islands Coral Reef National Monument (VICR). The purpose of this document is to: 1) Quantify spatial patterns and temporal trends in (i) benthic habitat composition and (ii) fish species abundance, size structure, biomass, and diversity; 2) Provide maps showing the locations of biological surveys and broad-scale distributions of key fish and benthic species and assemblages; and 3) Compare benthic habitat composition and reef fish assemblages in areas under NPS jurisdiction with those in similar areas not managed by NPS (i.e., outside of the VIIS and VICR boundaries). This report provides key information to help the St. John management community and others understand the impacts of natural and man-made perturbations on coral reef and near-shore ecosystems. It also supports ecosystem-based management efforts to conserve the region’s coral reef and related fauna while maintaining the many goods and ecological services that they offer to society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1999, NOAA’s Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) has been working with federal and territorial partners to characterize monitor and assess the status of the marine environment in southwestern Puerto Rico. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort of the La Parguera region in southwestern Puerto Rico was conducted through partnerships with the University of Puerto Rico (UPR) and the Puerto Rico Department of Natural and Environmental Resources (DNER). Project funding was primarily provided by NOAA CRCP and CCMA. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem in the La Parguera region have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a suite of hurricanes, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem several activities are underway or have been implemented to manage the marine resources. These efforts have been supported by the CREM project by identifying marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first seven years of fish survey data (2001-2007) and associated characterization of the benthos. The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure across the seascape including fringing mangroves, inner, middle, and outer reef areas, and open ocean shelf bank areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shallow coral reefs in the IndoPacific contain the highest diversity of marine organisms in the world, with approximately 1500 described species of fish, over 500 species of scleractinian corals, and an estimated 1-10 million organisms yet to be characterized (Reaka-Kudla et al. 1994). These centers of marine biodiversity are facing significant, multiple threats to reef community and habitat structure and function, resulting in local to wide-scale regional damage. Wilkinson (2004) characterized the major pressures as including (1) global climate change, (2) diseases, plagues and invasive species, (3) direct human pressures, (4) poor governance and lack of political will, and (5) international action or inaction. Signs that the natural plasticity of reef ecosystems has been exceeded in many areas from the effects of environmental (e.g., global climate change) and anthropogenic (e.g., land use, pollution) stressors is evidenced by the loss of 20% of the world’s coral reefs (Wilkinson 2004). Predictions are that another 24% (Wilkinson 2006) are under imminent risk of collapse and an additional 26% are under a longer term threat from reduced fitness, disease outbreaks, and increased mortality. These predictions indicate that the current list of approximately 30-40 fatal diseases impacting corals will expand as will the frequency and extent of “coral bleaching” (Waddell 2005; Wilkinson 2004). Disease and corallivore outbreaks, in combination with multiple, concomitant human disturbances are compromising corals and coral reef communities to the point where their ability to rebound from natural disturbances is being lost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial variation in demographic parameters of the red throat emperor (Lethrinus miniatus) was examined among 12 coral reefs in three geographic regions (Townsville, Mackay, and Storm Cay) spanning over 3° of latitude of the Great Barrier Reef, Australia. Estimates of demographic parameters were based on age estimates from counts of annuli in whole otoliths because there was no significant difference in age estimates between whole and sectioned otoliths. There were significant regional differences in age structures, rates of somatic and otolith growth, and total mortality. The Townsville region was characterized by the greatest proportion of older fish, the smallest maximum size, and the lowest rates of otolith growth and total mortality. In contrast the Mackay region was characterized by the highest proportion of younger fish, the largest maximum size, and the highest rates of otolith growth and total mortality. Demographic parameters for the Storm Cay region were intermediate between the other two regions. Historic differences in fishing pressure and regional differences in productivity are two alternative hypotheses given to explain the regional patterns in demographic parameters. All demographic parameters were similar among the four reefs within each region. Thus, subpopulations with relatively homogeneous demographic parameters occurred on scales of reef clusters. Previous studies, by contrast, have found substantial between-reef variation in demographic parameters within regions. Thus spatial variation in demographic parameters for L. miniatus may differ from what is assumed typical for a coral-reef fish metapopulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital videophotography, computer image analysis and physical measurements have been used to monitor sedimentation rates, coral cover, genera richness, rugosity and estimated recruitment dates of massive corals at three different sites in the Wakatobi Marine National Park, Indonesia, and on the reefs around Discovery Bay, Jamaica. Semi-structured interviews with key stakeholders in the Wakatobi Marine National Park indicated that coral mining was extensively practised, and is responsible for the absence of large non-branching corals on the Sampela reef Blast fishing is also practised in the Wakatobi Marine Park, and the authors, together with students, showed that blast fishing resulted in coral bleaching and not mortality of two Porites lutea colonies. In addition, we showed that monitoring of bleaching in Porites colonies induced by blast fishing could be a useful way of monitoring blast fishing practices in susceptible areas in the Indo-Pacific. The techniques used in this study are appropriate for use by volunteers with sufficient training, and provide excellent projects for dissertation students reading undergraduate degrees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mortality of corals is increasing due to bleaching, disease and algal overgrowth. In the Caribbean, low rates of coral recruitment contribute to the slow or undetectable rates of recovery in reef ecosystems. Although algae have long been suspected to interfere with coral recruitment, the mechanisms of that interaction remain unclear. We experimentally tested the effects of turf algal abundance on 3 sequential factors important to recruitment of corals: the biophysical delivery of planktonic coral larvae, their propensity to settle, and the availability of microhabitats where they survive. We deployed coral settlement plates inside and outside damselfish Stegastes spp. gardens and cages. Damselfish aggression reduced herbivory from fishes, and cages became fouled with turf algae, both locally increasing algal biomass surrounding the plates. This reduced flushing rates in nursery microhabitats on the plate underside, limiting larvae available for settlement. Coral spat settled preferentially on an early successional crustose coralline alga Titanoderma prototypum but also on or near other coralline algae, biofilms, and calcareous polychaete worm tubes. Post-settlement survival was highest in the fully grazed, lowest algal biomass treatment, and after 27 mo 'spat' densities were 73 % higher in this treatment. The 'gauntlet' refers to the sequence of ecological processes through which corals must survive to recruit. The highest proportion of coral spat successfully running the gauntlet did so under conditions of low algal biomass resulting from increased herbivory. If coral recruitment is heavily controlled at very local scales by this gauntlet, then coral reef managers could improve a reef's recruitment potential by managing for reduced algal biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.