987 resultados para Coordinated optimal dispatch


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deterministic Optimal Reactive Power Dispatch problem has been extensively studied, such that the demand power and the availability of shunt reactive power compensators are known and fixed. Give this background, a two-stage stochastic optimization model is first formulated under the presumption that the load demand can be modeled as specified random parameters. A second stochastic chance-constrained model is presented considering uncertainty on the demand and the equivalent availability of shunt reactive power compensators. Simulations on six-bus and 30-bus test systems are used to illustrate the validity and essential features of the proposed models. This simulations shows that the proposed models can prevent to the power system operator about of the deficit of reactive power in the power system and suggest that shunt reactive sourses must be dispatched against the unavailability of any reactive source. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optimal reactive dispatch problem is a nonlinear programming problem containing continuous and discrete control variables. Owing to the difficulty caused by discrete variables, this problem is usually solved assuming all variables as continuous variables, therefore the original discrete variables are rounded off to the closest discrete value. This approach may provide solutions far from optimal or even unfeasible solutions. This paper presents an efficient handling of discrete variables by penalty function so that the problem becomes continuous and differentiable. Simulations with the IEEE test systems were performed showing the efficiency of the proposed approach. © 1969-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The available wind power is stochastic and requires appropriate tools in the OPF model for economic and reliable power system operation. This paper exhibit the OPF formulation with factors involved in the intermittency of wind power. Weibull distribution is adopted to find the stochastic wind speed and power distribution. The reserve requirement is evaluated based on the wind distribution and risk of under/over estimation of the wind power. In addition, the Wind Energy Conversion System (WECS) is represented by Doubly Fed Induction Generator (DFIG) based wind farms. The reactive power capability for DFIG based wind farm is also analyzed. The study is performed on IEEE-30 bus system with wind farm located at different buses and with different wind profiles. Also the reactive power capacity to be installed in the wind farm to maintain a satisfactory voltage profile under the various wind flow scenario is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study is presented which is aimed at developing techniques suitable for effective planning and efficient operation of fleets of aircraft typical of the air force of a developing country. An important aspect of fleet management, the problem of resource allocation for achieving prescribed operational effectiveness of the fleet, is considered. For analysis purposes, it is assumed that the planes operate in a single flying-base repair-depot environment. The perennial problem of resource allocation for fleet and facility buildup that faces planners is modeled and solved as an optimal control problem. These models contain two "policy" variables representing investments in aircraft and repair facilities. The feasibility of decentralized control is explored by assuming the two policy variables are under the control of two independent decisionmakers guided by different and not often well coordinated objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study is presented which is aimed at developing techniques suitable for effective planning and efficient operation of fleets of aircraft typical of the air force of a developing country. An important aspect of fleet management, the problem of resource allocation for achieving prescribed operational effectiveness of the fleet, is considered. For analysis purposes, it is assumed that the planes operate in a single flying-base repair-depot environment. The perennial problem of resource allocation for fleet and facility buildup that faces planners is modeled and solved as an optimal control problem. These models contain two "policy" variables representing investments in aircraft and repair facilities. The feasibility of decentralized control is explored by assuming the two policy variables are under the control of two independent decisionmakers guided by different and not often well coordinated objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a Reinforcement Learning (RL) approach to economic dispatch (ED) using Radial Basis Function neural network. We formulate the ED as an N stage decision making problem. We propose a novel architecture to store Qvalues and present a learning algorithm to learn the weights of the neural network. Even though many stochastic search techniques like simulated annealing, genetic algorithm and evolutionary programming have been applied to ED, they require searching for the optimal solution for each load demand. Also they find limitation in handling stochastic cost functions. In our approach once we learn the Q-values, we can find the dispatch for any load demand. We have recently proposed a RL approach to ED. In that approach, we could find only the optimum dispatch for a set of specified discrete values of power demand. The performance of the proposed algorithm is validated by taking IEEE 6 bus system, considering transmission losses

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My dissertation focuses on dynamic aspects of coordination processes such as reversibility of early actions, option to delay decisions, and learning of the environment from the observation of other people’s actions. This study proposes the use of tractable dynamic global games where players privately and passively learn about their actions’ true payoffs and are able to adjust early investment decisions to the arrival of new information to investigate the consequences of the presence of liquidity shocks to the performance of a Tobin tax as a policy intended to foster coordination success (chapter 1), and the adequacy of the use of a Tobin tax in order to reduce an economy’s vulnerability to sudden stops (chapter 2). Then, it analyzes players’ incentive to acquire costly information in a sequential decision setting (chapter 3). In chapter 1, a continuum of foreign agents decide whether to enter or not in an investment project. A fraction λ of them are hit by liquidity restrictions in a second period and are forced to withdraw early investment or precluded from investing in the interim period, depending on the actions they chose in the first period. Players not affected by the liquidity shock are able to revise early decisions. Coordination success is increasing in the aggregate investment and decreasing in the aggregate volume of capital exit. Without liquidity shocks, aggregate investment is (in a pivotal contingency) invariant to frictions like a tax on short term capitals. In this case, a Tobin tax always increases success incidence. In the presence of liquidity shocks, this invariance result no longer holds in equilibrium. A Tobin tax becomes harmful to aggregate investment, which may reduces success incidence if the economy does not benefit enough from avoiding capital reversals. It is shown that the Tobin tax that maximizes the ex-ante probability of successfully coordinated investment is decreasing in the liquidity shock. Chapter 2 studies the effects of a Tobin tax in the same setting of the global game model proposed in chapter 1, with the exception that the liquidity shock is considered stochastic, i.e, there is also aggregate uncertainty about the extension of the liquidity restrictions. It identifies conditions under which, in the unique equilibrium of the model with low probability of liquidity shocks but large dry-ups, a Tobin tax is welfare improving, helping agents to coordinate on the good outcome. The model provides a rationale for a Tobin tax on economies that are prone to sudden stops. The optimal Tobin tax tends to be larger when capital reversals are more harmful and when the fraction of agents hit by liquidity shocks is smaller. Chapter 3 focuses on information acquisition in a sequential decision game with payoff complementar- ity and information externality. When information is cheap relatively to players’ incentive to coordinate actions, only the first player chooses to process information; the second player learns about the true payoff distribution from the observation of the first player’s decision and follows her action. Miscoordination requires that both players privately precess information, which tends to happen when it is expensive and the prior knowledge about the distribution of the payoffs has a large variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach to solve the Optimal Power Flow problem. This approach considers the application of logarithmic barrier method to voltage magnitude and tap-changing transformer variables and the other constraints are treated by augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. (C) 2005 Elsevier Ltd. All rights reserved.