967 resultados para Cooperativa Integral de Transportadores Pensilvania
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Paula Frassinetti para obtenção do grau de Mestre em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico.
Resumo:
La Fundación INTERVIDA es una Organización No Gubernamental, la cual trabaja para mejorar las condiciones de vida de las personas que lo necesitan, mediante el desarrollo material e intelectual, al igual que realiza proyectos de desarrollo integral; uno de esos proyectos es el de la cooperativa “Delicias de Jayaque” , cooperativa que se dedica a la producción y comercialización de hortalizas encurtidas, cuyo apoyo por parte de INTERVIDA es por medio de capacitaciones, ayuda con capital semilla entre otras; una de las desventajas que posee la Cooperativa es que no cuenta con un estudio de mercado, el cual seria de mucha ayuda para conocer el comportamiento de los consumidores de hortalizas encurtidas y por ende de los gustos y preferencias que estos tengan. El trabajo de investigación se realiza con el objetivo de brindar a la Cooperativa resultados de los atributos y aspectos más importantes que los consumidores buscan en este tipo de productos, así como los sabores que prefieren, preferencia en el empaque, precios en los cuales están dispuestos a dar por un producto de este tipo; aspectos que ayudarán a la Cooperativa a dar a conocer su producto haciendo un buen uso de los diferentes medios de publicidad, mejoramiento en el producto, conocer a la competencia. Para conocer de manera específica las necesidades de la Cooperativa, se utilizaron técnicas de recolección de datos, entre éstas se encuentran cuestionarios dirigidos a los consumidores, distribuidores y productores, también se hicieron visitas a instituciones, entrevistas a personas que conocen del tema y llamadas telefónicas. Con la información recabada se estableció los puntos en los cuales la Cooperativa podría mejorar, proponiendo estrategias en los cuatro elementos de la mezcla de mercadotecnia, así como en la parte operativa, considerando posicionar el producto en la mente del consumidor y que éste le sea fiel a la marca de “Delicias de Jayaque”. Además, se realizó una evaluación económica haciendo uso del valor presente neto y de la tasa interna de retorno, como herramientas para determinar qué tan viable es el proyecto de producción y comercialización de hortalizas encurtidas.
Resumo:
En la actualidad los productos elaborados a base de plantas medicinales no son muy conocidos, ya que sus productores por lo general carecen de los mecanismos adecuados de promoción y comercialización, de la capacidad económica para darlos a conocer de manera efectiva en los municipios de Sonsonate y Cuisnahuat. Por las razones anteriores se diseñó un “Plan Promocional para incentivar y desarrollar mercado de productos a base de plantas medicinales, elaborados por la Asociación Cooperativa de Productores Agropecuarios Tepegüisil de R. L., del Cantón San Lucas del municipio de Cuisnahuat, Departamento de Sonsonate” que es el tema con que se identifica esta investigación. Este proyecto se llevará a cabo con el apoyo de la Asociación El Bálsamo, que tiene como objetivo contribuir al desarrollo humano sustentable y al fortalecimiento del sector microempresarial urbano y rural a través de servicios financieros sostenibles, capacitación integral y asociatividad empresarial auto gestora. La metodología de investigación que se ha utilizado está compuesta por el método científico, el tipo de investigación es descriptiva; también fuentes de investigación primarias como: los miembros de la Asociación Cooperativa Tepegüisil, el Director de Proyectos de la Asociación El Bálsamo, clientes reales y potenciales; al mismo tiempo entre las fuentes secundarias utilizadas están: documentos, libros y tesis relacionadas al tema, páginas en Internet y toda la información proporcionada por la Asociación El Bálsamo fueron de mucha importancia para conocer la situación actual de esta entidad. Mediante las encuestas y entrevistas realizadas a los miembros de la Asociación Cooperativa y al Director de Proyectos de El Bálsamo, se pudo comprobar que los productos a base de plantas medicinales que elaboran no poseen estrategias de promoción y comercialización que les permita incentivar y desarrollar el mercado. Con el propósito de establecer las herramientas de promoción y comercialización de dichos productos se propone implementar estrategias de Publicidad, Promoción de Ventas, Venta Personal y Relaciones Públicas; además utilizar el logotipo rediseñado y el eslogan denominado “lo natural en tu cabello y tu piel”.
Resumo:
Integral attacks are well-known to be effective against byte-based block ciphers. In this document, we outline how to launch integral attacks against bit-based block ciphers. This new type of integral attack traces the propagation of the plaintext structure at bit-level by incorporating bit-pattern based notations. The new notation gives the attacker more details about the properties of a structure of cipher blocks. The main difference from ordinary integral attacks is that we look at the pattern the bits in a specific position in the cipher block has through the structure. The bit-pattern based integral attack is applied to Noekeon, Serpent and present reduced up to 5, 6 and 7 rounds, respectively. This includes the first attacks on Noekeon and present using integral cryptanalysis. All attacks manage to recover the full subkey of the final round.
Resumo:
Determining the optimal of black-start strategies is very important for speeding the restoration speed of a power system after a global blackout. Most existing black-start decision-making methods are based on the assumption that all indexes are independent of each other, and little attention has been paid to the group decision-making method which is more reliable. Given this background, the intuitionistic fuzzy set and further intuitionistic fuzzy Choquet integral operator are presented, and a black-start decision-making method based on this integral operator is presented. Compared to existing methods, the proposed algorithm cannot only deal with the relevance among the indexes, but also overcome some shortcomings of the existing methods. Finally, an example is used to demonstrate the proposed method. © 2012 The Institution of Engineering and Technology.
Resumo:
Based on the eigen crack opening displacement (COD) boundary integral equations, a newly developed computational approach is proposed for the analysis of multiple crack problems. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix. The interactions among cracks are dealt with by two parts according to the distances of cracks to the current crack. The strong effects of cracks in adjacent group are treated with the aid of the local Eshelby matrix derived from the traction BIEs in discrete form. While the relatively week effects of cracks in far-field group are treated in the iteration procedures. Numerical examples are provided for the stress intensity factors of multiple cracks, up to several thousands in number, with the proposed approach. By comparing with the analytical solutions in the literature as well as solutions of the dual boundary integral equations, the effectiveness and the efficiencies of the proposed approach are verified.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
In this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.
Resumo:
Aiming at the large scale numerical simulation of particle reinforced materials, the concept of local Eshelby matrix has been introduced into the computational model of the eigenstrain boundary integral equation (BIE) to solve the problem of interactions among particles. The local Eshelby matrix can be considered as an extension of the concepts of Eshelby tensor and the equivalent inclusion in numerical form. Taking the subdomain boundary element method as the control, three-dimensional stress analyses are carried out for some ellipsoidal particles in full space with the proposed computational model. Through the numerical examples, it is verified not only the correctness and feasibility but also the high efficiency of the present model with the corresponding solution procedure, showing the potential of solving the problem of large scale numerical simulation of particle reinforced materials.
Resumo:
This paper proposes a method for design of a set-point regulation controller with integral action for an underactuated robotic system. The robot is described as a port-Hamiltonian system, and the control design is based on a coordinate transformation and a dynamic extension. Both the change of coordinates and the dynamic extension add extra degrees of freedom that facilitate the solution of the matching equation associated with interconnection and damping assignment passivity-based control designs (IDA-PBC). The stability of the controlled system is proved using the closed loop Hamiltonian as a Lyapunov candidate function. The performance of the proposed controller is shown in simulation.