959 resultados para Controlled Living Radical Polymerization
Resumo:
Bacterial cellulose/polymethacrylate nanocomposites have received attention in numerous areas of study and in a variety of applications. The attractive properties of methacrylate polymers and bacterial cellulose, BC, allow the synthesis of new nanocomposites with distinct characteristics. In this study, BC/poly(glycidylmethacrylate) (BC/PGMA) and BC/poly(ethyleneglycol)methacrylate (BC/PPEGMA) nanocomposites were prepared through in situ free radical polymerization of GMA and PEGMA, respectively. Ammonium persulphate (APS) was used as an initiator and N,N’methylenebisacrilamide (MBA) was used as a crosslinker in BC/PGMA. Chemical composition, morphology, thermal stability, water absorption, mechanic and surface properties were determined through specific characterization techniques. The optimal polymerization was obtained at (1:2) for BC/PGMA, (1:2:0.2) ratio for BC/GMA/MBA and (1:20) for BC/PPEGMA, with 0.5% of initiator at 60 ºC during 6 h. A maximum of 67% and 87% of incorporation percentage was obtained, respectively, for the nanocomposites BC/PGMA/MBA and BC/PPEGMA. BC/PGMA nanocomposites exhibited an increase of roughness and compactation of the three-dimensional structure, an improvement in the thermal and mechanical properties, and a decrease in their swelling ability and crystallinity. On the other hand, BC/PPEGMA showed a decrease of stiffness of three-dimensional structure, improvement in thermal and mechanical properties, an increase in their swelling ability and a decrease the crystallinity. Both BC/polymethacrylate nanocomposites exhibited a basic surface character. The acid treatment showed to be a suitable strategy to modifiy BC/PGMA nanocomposites through epoxide ring-opening reaction mechanism. Nanocomposites became more compact, smooth and with more water retention ability. A decrease in the thermal and mechanical proprieties was observed. The new nanocomposites acquired properties useful to biomedical applications or/and removal of heavy metals due to the presence of functional groups.
Resumo:
Living anionic polymerization of 4-vinylbenzocylobutene was performed in benzene at room temperature using sec-butyllithium as the initiator. Results of the kinetic studies indicated the termination- and transfer-free nature of the polymerization. Homopolymers with predictable molecular weights and narrow molecular weight distributions were produced, excluding the interference of the cyclobutene rings during initiation and propagation. Thermogravimetric analysis of poly(4-vinylbenzocyclobutene) in air showed a small weight gain at ~200 °C, a rapid decomposition at ~455 °C, and a gradual decomposition at ~566 °C. This behavior was attributed to the formation of radicals from the pendent benzocyclobutene functionality through o-quinodimethane intermediates and simultaneous decomposition/cross-linking reactions at high temperature. The living nature of the polymerization was also examined via sequential copolymerization with butadiene to form diblock copolymers.
Resumo:
This thesis investigates the synthesis of polymeric ionic liquid [(poly-acryloyloxy)6C6C1im][NTf2], by free radical polymerization of acryloyl imidazolium-base ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2]. Moreover, the smartest synthetic route to obtain this monomer was investigated. Two different synthesis were compared. The first one started from the preparation of the monomer 6-chlorohexyl acrylate followed by substitution and metathesis to reach ionic liquid monomer. The second one started from synthesis of the ionic liquid [(HO)6C6C1im]Cl followed by metathesis and esterification in order to get ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2].
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 °C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 °C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (Mp), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 degrees C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 degrees C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (M-p), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report the first synthesis of amphiphilic four-arm star diblock copolymers consisting of styrene (STY) and acrylic acid (AA) made using reversible addition-fragmentation chain transfer (RAFT; Z group approach with no star-star coupling). The polymerization proceeded in an ideal living manner. The size of the poly(AA(132)-STYm)(4) stars in DMF were small and close to 7 nm, suggesting no star aggregation. Slow addition of water (pH = 6.8) to this mixture resulted in aggregates of 15 stars per micelle with core-shell morphology. Calculations showed that the polyAA blocks were slightly extended with a shell thickness of 15 nm. Treatment of these micelles with piperidine to cleave the block arms from the core resulted in little or no change on micelle size or morphology, but the polyAA shell thickness was close to 29 nm (33 nm is the maximum at full extension) suggesting a release of entropy when the arms are detached from the core molecule. In this work we showed through the use of star amphiphilic polymers that the micelle size, aggregation number, and morphology could be controlled.
Resumo:
The kinetics of the polymerization of styrene iniated by 1-chloro-1-phenyltehane/tin (IV) chloride in the presence of tetrabutylammonium chloride have been studied. Dilatometry studies at 25 °C were conducted and the orders of reaction were established. Molecular weight studies were conducted for these experiments using size exclusion chromatography. These studies indicated that transfer/termination reactions were present. The observed kinetics may be explained by a polymerization mechanism involving a single propagating species which is present in low concentrations. Reactions at 0 °C and -15 °C have shown that a "living" polymerization could be obtained at low temperatures. A method was derived to study the kinetics of a "living" polymerization by following the increase in degree of polymerization with time. Polymerizations of styrene were conducted using 1,4-bis(bromomethyl)benzene as a difunctional co-catalyst. These reactions produced polymers with broad or bimodal molecular weight distributions. These observations may be explained by the rate of initiation being slower than the rate of propagation or the presence of transfer/termination reactions. Reactions were conducted using a co-catalyst using a co-catalyst produced by the addition of 1,1-diphenylethane to 1,4-bis(bromomethyl)benzene. Size exclusion chromatography studies showed that the polymers produced had a narrower molecular weight distribution than those produced by polymerizations initiated by 1,4-bis(bromomethyl)benzene alone. However the polydispersity was still observed to increase with reaction time. This may also be explained by slow initiation compared to the rate of propagation. Polymerizations initiated by both bifunctional initiators were examined using the method of studying reaction kinetics by following the change in number average degree of polymerization. The results indicated that a straight line relationship could also be obtained with a non-living polymerization.
Resumo:
This thesis describes an experimental investigation of synthesis of polystyrene under various polymerization conditions such as solvent polarity, temperature, initial concentrations of initiator, catalyst, monomer and added salts or co-catalyst, which was achieved using the living cationic polymerization technology in conjunction with gel permeation chromatography (GPC) and NMR spectroscopy. Polymerizations of styrene were conducted using 1-phenyl ethylchloride (1-PEC) as an initiator and tin tetrachloride (SnCI4) as a catalyst in the presence of tetra-n-Butylammonium chloride (nBu4NCI). Effects of solvent polarity varied by mixing dichloromethane (DCM) and less polar cyclohexane (C.hex), temperature, initial concentrations of SnC14, 1-PEC and nBu4NCI on the polymerizations were examined, and the conditions under which a living polymerization can be obtained were optimised as: [styrene]o ~ 0.75 - 2 M; [1-PEC]o ~ 0.005 - 0.05 M; [SnCI4Jo ~ 0.05 - 0.4 M; [nBu4NCIJo ~ 0.001 - 0.1 M; DCM/C.hex ~ 50/0 - 20/30 v/v; T ~ 0 to -45°C. Kinetic studies of styrene polymerization using the Omnifit sampling method showed that the number average molecular weight (Mn) of the polymers obtained increased in direct proportion to monomer conversion and agreed well with the theoretical Mn expected from the concentration ratios of monomer to initiator. The linearities of both the 1n([MJoI[M]) vs. time plot and the Mn vs. monomer conversion plot, and the narrow molecular weight distribution (MWD) measured using GPC demonstrated the livingness of the polymerizations, indicating the absence of irreversible termination and transfer within the lifetimes of the polymerizations. The proposed 'two species' propagation mechanism was found to apply for the styrene polymerization with 1-PEC/SnCI4 in the presence of nBu4NCl. The further kinetic experiments showed that living styrene polymerizations were achieved using the 1-PEC/SnCI4 initiating system in mixtures of DCM/C.hex 30/20 v/v at -15°C in the presence of various bromide salts, tetra-n-butylammonium bromide, tetra-n-pentylammonium bromide, tetra-n-heptylammonium bromide, and tetra-n-octylammonium bromide, respectively. The types of the bromide salts were found to have no significant effect on monomer conversion, Mn, polydispersity and initiation efficiency. Living polymerizations of styrene were also achieved using titanium tetrachloride (TiCI4) as a catalyst and 1-PEC as an initiator in the presence of a small amount of 2,6-di-tert-butylpyridine or pyridine instead of nBu4NCl. GPC analysis showed that the polymers obtained had narrow polydispersities (P.D. < 1.3), and the linearities of both the In([MJo/[MJ) vs. time plot and the Mn vs. monomer conversion plot demonstrated that the polymerizations are living, when the ratio of DCM and C.hex was less than 40 : 10 and the reaction temperature was not lower than -15°C. The reaction orders relative to TiCl4 and 1-PEC were estimated from the investigations into the rate of polymerization to be 2.56 and 1.0 respectively. lH and 13C NMR analysis of the resultant polystyrene would suggest the end-functionality of the product polymers is chlorine for all living polymerizations.
Resumo:
We have used neutron reflectometry to characterize the swelling behaviour of brushes of poly[2-(diethyl amino)ethyl methacrylate], a polybase, as a function of pH. The brushes, synthesized by the "grafting from" method of atom transfer radical polymerization, were observed to approximately double their thickness in low pH solutions, although the pK is shifted to a lower pH than in dilute solution. The composition-depth profile obtained from the reflectometry experiments for the swollen brushes reveals a region depleted in polymer between the substrate and the extended part of the brush.
Resumo:
Die hochspezifische Funktionalisierung von Proteinen und Peptiden kann durch milde reduktive Spaltung der lösungsmittelzugänglichen Disulfidbrücken und anschließende Rückverbrückung durch den Einbau sogenannter Linkermoleküle über einen konsekutiven Eliminierungs-Additionsprozess verwirklicht werden. Die Erweiterung des Linkerportfolios stellte in erster Instanz die Entwicklung von verschieden funktionalisierten Systemen dar, welche als hochflexible Kernbausteine für den Aufbau komplexer Architekturen dienten. Das Verständnis für die Reaktivität und Reversibilität der Thioladdition an die Mono-und Bissulfone in Abhängigkeit des Substituenten in p-Position konnte durch Variation von Parametern wie Lösungsmittel oder pH-Wert für intelligentes Produktdesign genutzt werden. Heterokonjugate zweier Biomoleküle mit ungepaartem Cystein wurden durch die Kombination von Maleinimid- und Bissulfonchemie innerhalb eines Linkermoleküls realisiert. Polymer-Peptid-Konjugate wurden einerseits über die grafting to Methode durch Modifizierung von Somatostatin mit PEGbissulfonen und anderseits durch grafting from unter Verwendung eines zuvor synthetisierten ATRP-Makroinitiators dargestellt. Multivalente Konjugate konnten durch die Synthese von hochsymmetrischen Tetra- sowie Hexasulfonen und anschließende Umsetzung mit Somatostatin erhalten werden. Die Polyinterkalatorpolymere, die durch lebende radikalische Polymerisation eines Bissulfidmonomers generiert wurden, wurden mit Glutathion umgesetzt. Durch die Interkalation von p-Ethinyl sowie p-Iodmonosulfon in die Disulfidbrücke von Somatostatin konnte erfolgreich gezeigt werden, dass die Rückverbrückung unter Rezyklisierung gelang. Die biologische Integrität wurde durch die Modifikation nicht beeinträchtigt und die erfolgreiche Aufnahme wurde nur bei den rezeptorpositiven Zellen (CAPAN-2) beobachtet. Das artifizielle Iodderivat im Vergleich zum nativen Somatostatin ein erhöhtes Potential zur Apoptoseinduktion. Die Somatostatinderivate präsentierten sich somit als attraktive potentielle Therapeutika.
Poly(lactide): from hyperbranched copolyesters to new block copolymers with functional methacrylates
Resumo:
The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.
Resumo:
Xanthate-mediated (reversible addition-fragmentation chain transfer) emulsion polymerization has been used to create novel polystyrene nanoparticles with functionalized surfaces (see Figure) for the selective sequestering of heavy metals from water below ppm levels. These nanoparticles show a high degree of selectivity for Hg-II over Co-II. This technology has potential for the selective remediation of heavy metals from the human blood system.