989 resultados para Control of productive activity
Resumo:
Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The orientation of the Interplanetary Magnetic Field (IMF) during transient bursts of ionospheric flow and auroral activity in the dayside auroral ionosphere is studied, using data from the EISCAT radar, meridian-scanning photometers, and an all-sky TV camera, in conjunction with simultaneous observations of the interplanetary medium by the IMP-8 satellite. It is found that the ionospheric flow and auroral burst events occur regularly (mean repetition period equal to 8.3 ± 0.6 min) during an initial period of about 45 min when the IMF is continuously and strongly southward in GSM coordinates, consistent with previous observations of the occurrence of transient dayside auroral activity. However, in the subsequent 1.5 h, the IMF was predominantly northward, and only made brief excursions to a southward orientation. During this period, the mean interval between events increased to 19.2 ± 1.7 min. If it is assumed that changes in the North-South component of the IMF are aligned with the IMF vector in the ecliptic plane, the delays can be estimated between such a change impinging upon IMP-8 and the response in the cleft ionosphere within the radar field-of-view. It is found that, to within the accuracy of this computed lag, each transient ionospheric event during the period of predominantly northward IMF can be associated with a brief, isolated southward excursion of the IMF, as observed by IMP-8. From this limited period of data, we therefore suggest that transient momentum exchange between the magnetosheath and the ionosphere occurs quasi-periodically when the IMF is continuously southward, with a mean period which is strikingly similar to that for Flux Transfer Events (FTEs) at the magnetopause. During periods of otherwise northward IMF, individual momentum transfer events can be triggered by brief swings to southward IMF. Hence under the latter conditions the periodicity of the events can reflect a periodicity in the IMF, but that period will always be larger than the minimum value which occurs when the IMF is strongly and continuously southward.
Resumo:
Reptiles, particularly snakes, exhibit large and quantitatively similar increments in metabolic rate during muscular exercise and following a meal, when they are apparently inactive. The cardiovascular responses are similar during these two states, but the underlying autonomic control of the heart remains unknown. We describe both adrenergic and cholinergic tonus on the heart during rest, during enforced activity and during digestion (24-36h after ingestion of 30% of their body mass) in the snake Boa constrictor. The snakes were equipped with an arterial catheter for measurements of blood pressure and heart rate, and autonomic tonus was determined following infusion of the beta -adrenergic antagonist propranolol (3mg kg(-1)) and the muscarinic cholinoceptor antagonist atropine (3 mg kg-1).The mean heart rate of fasting animals at rest was 26.4 +/- 1.4 min(-1), and this increased to 36.1 +/- 1.4 min(-1) (means +/- S.E.M.; N=8) following double autonomic block (atropine and propranolol). The calculated cholinergic and adrenergic tones were 60.1 +/- 0.3% and 19.8 +/- 2.2%, respectively. Heart rate increased to 61.4 +/- 1.5 min(-1) during enforced activity, and this response was significantly reduced by propranolol (maximum values of 35.8 +/-1.6 min(-1)), but unaffected by atropine. The cholinergic and adrenergic tones were 2.6 +/- 2.2 and 41.3 +/- 1.9 % during activity, respectively. Double autonomic block virtually abolished tachycardia associated with enforced activity (heart rate increased significantly from 36.1 +/- 1.4 to 37.6 +/- 1.3 min(-1)), indicating that non-adrenergic, non-cholinergic effectors are not involved in regulating heart rate during activity. Blood pressure also increased during activity.Digestion was accompanied by an increase in heart rate from 25.6 +/- 1.3 to 47.7 +/- 2.2 min(-1) (N=8). In these animals, heart rate decreased to 44.2 +/- 2.7 min-1 following propranolol infusion and increased to 53.9 +/- 1.8 min-1 after infusion of atropine, resulting in small cholinergic and adrenergic tones (6.0 +/- 3.5 and 11.1 +/- 1.1 %, respectively). The heart rate of digesting snakes was 47.0 +/- 1.0 min(-1) after double autonomic blockade, which is significantly higher than the value of 36.1 1.4 min-1 in double-blocked fasting animals at rest. Therefore, it appears that some other factor exerts a positive chronotropic effect during digestion, and we propose that this factor may be a circulating regulatory peptide, possibly liberated from the gastrointestinal system in response to the presence of food.
Resumo:
PROCAPRI is a software to productive and reproductive control of goats developed with the aim of assisting the goat producers in their decisions, to make a representative data set of Brazilian goats production and providing research information. It has five modules: Administration, Association, UNESP, Maintenance, and Utilities. It has been available since October 1994, and it has been amply used, with 157 copies distributed until April 1998 in Brazil and other countries.
Resumo:
Postbloom fruit drop (PFD) of citrus caused by Colletotrichum acutatum produces orange-brown lesions on petals and induces the abscission of young fruitlets and the retention of the calyces. Despite the fact that C. acutatum is not highly sensitive to benomyl in culture, this fungicide provides good control of the disease under field conditions. This study was undertaken to determine the effect of benomyl on various stages of disease development to understand the basis for its effectiveness in the field. We found that benomyl at 1.0 μg/ml reduced colony area of C. acutatum by about 75% and completely inhibited growth of C. gloeosporioides. Benomyl did not prevent conidial germination even at 100 μg/ml, but reduced germ tube elongation at 10 and 100 μg/ml. When benomyl was applied to flower clusters on screen-house-grown plants before inoculation, disease severity was greatly reduced. Applications at 24 and 48 h, but not at 72 h, after inoculation reduced PFD severity. Application of benomyl to symptomatic petals not bearing conidia did not prevent or reduce production of inoculum. Application to petals bearing conidia reduced viability of these fungal propagules by only about 50%. The viability of appressoria on mature leaves was not affected by benomyl application. Even when appressoria on mature leaves were stimulated to germinate by treatment with flower extracts, subsequent application of benomyl did not reduce propagule numbers below original levels. Benomyl appears to act by preventing infection and early development of the fungus in petals. However, once symptoms have developed, this fungicide has only minimal effects on further disease development and spread.
Resumo:
The main method used for the control of gastrointestinal nematodes in sheep production is the application of chemotherapeutic agents, which often lead to the selection of parasites resistant to given active principles. Biological control can be considered a promising alternative, contributing to an increase in the efficacy of verminous control. We determined the in vitro activity and in situ survival of the predatory fungi Arthrobotrys musiformis and Arthrobotrys conoides during passage through the gastrointestinal tract of sheep after oral administration of conidia in microencapsulated form and as a liquid in natura. Initial in vitro tests showed that both fungi were efficient in the predation of trichostrongylid L3 larvae present in the faeces of sheep naturally infected with gastrointestinal nematodes. The fungi presented high nematophagous activity, which was 99.3% for A. conoides and 73.7% for A. musiformis. A. conoides did not survive passage through the gastrointestinal tract under the conditions of the present experiment. On the other hand, A. musiformis was reisolated after administration in either microencapsulated or liquid form, suggesting that this species is a promising alternative for the control of nematodes in sheep since it survives without any protection (in natura). © Springer 2005.
Resumo:
The aim of this study was to analyze the effect of muscle fatigue in active and inactive young adults on the kinematic and kinetic parameters of normal gait and obstacle crossing. Twenty male subjects were divided into active (10) and inactive (10), based on self-reported physical activity. Participants performed three trials of two tasks (normal gait and obstacle crossing) before and after a fatigue protocol, consisting of repeated sit-to-stand transfers until the instructed pace could no longer be maintained. MANOVAs were used to compare dependent variables with the following factors: physical activity level, fatigue and task. The endurance time in the fatigue protocol was lower for the inactive group. Changes of gait parameters with fatigue, among which increased step width and increased stride speed were the most consistent, were independent of task and physical activity level. These findings indicate that the kinematic and kinetic parameters of gait are affected by muscle fatigue irrespective of the physical activity level of the subjects and type of gait. Inactive individuals used a slightly different strategy than active individuals when crossing an obstacle, independently of muscle fatigue. © 2013.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heme oxygenase-1 (HO-1) is an enzyme that catabolizes free heme, which induces an intense inflammatory response. The expression of HO-1 is induced by different stimuli, triggering an anti-inflammatory response during biological stress. It was previously verified that HO-1 is able to induce indoleamine 2,3-dioxygenase (IDO), an enzyme that is induced by IFN-γ in Toxoplasma gondii infection. To verify the role of HO-1 during in vivo T. gondii infection, BALB/c and C57BL/6 mice were infected with the ME49 strain and treated with zinc protoporphyrin IX (ZnPPIX) or hemin, which inhibit or induce HO-1 activity, respectively. The results show that T. gondii infection induced high levels of HO-1 expression in the lung of BALB/c and C57BL6 mice. The animals treated with ZnPPIX presented higher parasitism in the lungs of both lineages of mice, whereas hemin treatment decreased the parasite replication in this organ and in the small intestine of infected C57BL/6 mice. Furthermore, C57BL/6 mice infected with T. gondii and treated with hemin showed higher levels of IDO expression in the lungs and small intestine than uninfected mice. In conclusion, our data suggest that HO-1 activity is involved in the control of T. gondii in the lungs of both mouse lineages, whereas the hemin, a HO-1 inducer, seems to be involved in the control of parasitism in the small intestine of C57BL/6 mice.
Resumo:
Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.
Resumo:
Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcription by binding to a tTA-responsive promoter located in a response plasmid. Tc inhibits this tTA-dependent transactivation via its affinity for tTA. In double-transfected cells, therefore, the activity of a transgene can be controlled by Tc. Cultured rat mesangial cells were cotransfected with a regulator plasmid and a response plasmid that introduces a beta-galactosidase gene. In vitro, stable double-transfectant MtTAG cells exhibited no beta-galactosidase activity in the presence of Tc. However, following withdrawal of Tc from culture media, expression of beta-galactosidase was induced within 24 h. When Tc was again added, the expression was rapidly resuppressed. Low concentrations of Tc were sufficient to maintain the silent state of tTA-dependent promoter. MtTAG cells were then transferred into the rat glomeruli via renal artery injection. In the isolated chimeric glomeruli, expression of beta-galactosidase was induced ex vivo in the absence of Tc, whereas it was repressed in its presence. When Tc-pretreated MtTAG cells were transferred into the glomeruli of untreated rats, beta-galactosidase expression was induced in vivo within 3 days. Oral administration of Tc dramatically suppressed this induction. These data demonstrate the feasibility of using mesangial cell vectors combined with the Tc regulatory system for site-specific in vivo control of exogenous gene expression in the glomerulus.