963 resultados para Control agent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The postharvest phase has been considered an environment very suitable for successful application of biological control agents (BCAs). However, the tri-interaction between fungal pathogen, host (fruit) and antagonist is influenced by several parameters such as temperature, oxidative stresses, oxygen composition, water activity, etc. that could be determining for the success of biocontrol. Knowledge of the modes of action of BCAs is essential in order to enhance their viability and increase their potentialities in disease control. The thesis focused on the possibility to explain the modes of action of a biological control agent (BCA): Aureobasidium pullulans, in particular the strains L1 and L8, control effective against fruit postharvest fungal pathogen. In particular in this work were studied the different modes of action of BCA, such as: i) the ability to produce volatile organic compounds (VOCs), identified by SPME- gas chromatography-mass spectrometry (GC-MS) and tested by in vitro and in vivo assays against Penicillium spp., Botrytis cinerea, Colletotrichum acutatum; ii) the ability to produce lytic enzymes (exo and endo chitinase and β-1,3-glucanase) tested against Monilinia laxa, causal agent of brown rot of stone fruits. L1 and L8 lytic enzymes were also evaluated through their relative genes by molecular tools; iii) the competition for space and nutrients, such as sugars (sucrose, glucose and fructose) and iron; the latter induced the production of siderophores, molecules with high affinity for iron chelation. A molecular investigation was carried out to better understand the gene regulation strictly correlated to the production of these chelating molucules. The competition for space against M. laxa was verified by electron microscopy techniques; iv) a depth bibliographical analysis on BCAs mechanisms of action and their possible combination with physical and chemical treatments was conducted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Project: 88/142."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida's M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida's Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host specificity tests on Gynaikothrips ficorum (Marchal) and Gynaikothrips uzeli (Zimmerman) (Thysanoptera: Phlaeothripidae) have shown that under experimental conditions, G. ficorum will induce leaf galls on both Ficus benjamina L. and Ficus microcarpa L. f. (Rosales: Moraceae), but G. uzeli will induce galls only on F. benjamina. A further interesting aspect of the results is that gall induction by G. uzeli on F. benjamina appears to have been suppressed in the presence of F. microcarpa plants in the same cage. Liothrips takahashii (Moulton) (Thysanoptera: Phlaeothripidae), an inquiline in the galls of these Gynaikothrips, is reported for the first time from Australia, mainland China, Malaysia, Costa Rica, and western USA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum. native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C. s. stercusmuscarum, M, s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Few microorganisms are commercially available for use against white grubs (larvae of Scarabaeidae). Entomopathogenic bacteria, particularly Bacillus popilliae, have been used the longest for white grub suppression. Other bacteria, namely B. thuringiensis and Serratia spp. offer promise for future control. This papes examines two genera of bacteria (Bacillus and Serratia) from the historical and current perspective. Bacillus popilliae, the firs microbial control agent registered in the United States, has a long history of use in suppressing populations of the Japanese beetle, Popillia japonica. However, lack of in vitro production and the slow and sporadic nature of its activity, severely limits its utilization. B. thuringiensis, the most widely used microbial pesticide, has not been used for scarab, control. However, strains with scarab activity have recently been discovered. Scarab larvae have been collected in the United States with signs and symptoms similar to those characteristic of amber disease (caused by Serratia entomophila) in the New Zealand grass grub, Costelytra zealandica. A total of 147 bacteria have been obtained from the digestive tracts of larvae of the Japanese beetle and masked chafers, Cyclocephala spp., as well as from larvae and soil collected in Japan and China. Seventy five of these have been identified as Serratia spp. Most (40) of the remaining bacteria are in the genus Enterobacter. A majority of the bacteria (73) and of the Serratia (38) came from P. japonica.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

En el present treball s’ha avaluat el potencial dels nemàtodes entomopatògens per a controlar la plaga de R. ferrugineus. Per fer-ho, s’ha determinat la susceptibilitat d’aquesta a 4 espècies diferents de nemàtodes: Steinernema carpocasae (soca B14, IDEBIO, BIOVERD), Steinernema feltiae (soca D114), Steinernema sp. (D122) i Heterorhabditis bacteriophora (soca DG46). D’altra banda, s’ha determinat la predació de Steinernema carpocapsae per part de l’àcar Centroupeda almerodai (Acari: Acaridae) per comprovar si aquest pot influir negativament en l’efectivitat de S. carpocapsae com agent de control biològic. S’ha vist que el morrut de les palmeres és molt susceptible als nemàtodes entomopatògens en especial una soca comercial (S. carpocapsae), la qual produeix mortalitats del 91,67%. Hi ha evidències de que l’àcar C. almerodai depreda les formes infectives de S. carpocapsae encara que no és suficient important com perquè es vegi compromès l’efectivitat com a bioinsecticida. L’ús de nemàtodes entomopatògens com a control biològic és una alternativa viable als mètodes químics de eficàcia similar però menys respectuosos amb el medi ambient.